Triticum spelta L. is one of the oldest wheat species, which is characterized by many valuable properties, including plant resistance to pathogens, better adaptability to adverse environmental factors, increased protein content in the grain, and its nutritional values. In recent years, the popularity and use of spelt in the world, and in Ukraine in particular, has been steadily growing, which is associated with the development of organic farming, as well as the need for high-quality food products, which this crop provides. Despite the high potential of spelt, its widespread distribution is hindered by low yield and some morphological characteristics (plant height, grain filminess, ear fragility). Through selection and genetic improvement, it is possible to eliminate the shortcomings of the crop and at the same time preserve its valuable properties. In this regard, the aim of our research was to study the samples of winter spelt collection of the Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine for morphological characteristics, productivity and quality indices of grain, and to identify valuable genotypes for their use in the breeding for the creation of improved crop varieties. There were identified breeding lines which, according to certain economic and valuable indices, were at or above the standard variety of winter bread wheat Natalka, and are promising for the genetic improvement of spelt and bread wheat. It was shown that lines with a shorter stem length, compared to the standard spelt variety Zorya Ukrainy, with high resistance to lodging, were distinguished by higher productivity, and are suitable for inclusion in the schemes of breeding improvement of this crop. Genotypes were identified in which the protein yield per hectare exceeds the standard variety Zorya Ukrainy, which is due to the better combination of protein content in grain and its yield. There were identified genotypes in which the index of grain hardness significantly exceeded the index of the bread wheat standard variety Natalka, which may indicate a potentially higher baking quality of their flour. A correlation analysis was conducted to identify the relationship between the manifestation of agronomic traits and grain quality indices. Selection lines were identified that deserve further development and transfer to the State Variety Testing.
Keywords: Triticum spelta L., winter wheat, collection, morphological traits, productivity, grain quality, bread wheat
Full text and supplemented materials
Free full text: PDFReferences
1. Packa, D., ZaYuski, D., Graban, . & Lajszner, W. (2019). An evaluation of spelt crosses for breeding new varieties of spring spelt. Agronomy, 9(4), 167. https://doi.org/10.3390/agronomy9040167
2. Luo, V.-C., Yang, Z.-L. & You, F.M. (2007). The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor. Appl. Genet., 114(6), pp. 947-959. https://doi.org/10.1007/s00122-006-0474-0
3. Kislev, M. Emergence of wheat agriculture. (1984). Palѕorient, 10(2), pp. 61-70. https://doi.org/10.3406/paleo.1984.940
4. Gospodarenko, G.M., Kostogriz, P.V., Liubich, V.V., Parii, M.F., Poltoretskii, S.P., Polianetska, I.O., Riabovol, I.S., Rjabovol, L.O. & Suhomud, O.G. (2016). Pshenytsia spelta [Spelt wheat]. Kyiv: TOV Sik Group Ukraine [in Ukrainian].
5. Alvarez, J.B. & Guzm«n C. (2013). Spanish ancient wheat: a genetic resource for wheat quality breeding. Adv Crop Sci Tech, 1:101. https://doi.org/10.4172/2329-8863.1000101
6. Faris, J. (2014). Wheat domestication: key to agricultural revolutions pasts and future. In: Tuberosa, R., Graner, A., Frison, E. (eds.). Genomics of Plant Genetic Resources (pp. 439-464). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-7572-5_18
7. Zohary, D. & Hopf, M. (1993). Domestication of plants in the old world: The origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford: Claren Press.
8. Diordiieva, I.P., Riabovol, I.S., Riabovol, L.O., Babii, M.M., Fedorenko, S.V., Serzhuk, O.P., Maslovata, S.A., Liubchenko, A.I., Novak, Z.M. & Liubchenko, I.O. (2024). Breeding and genetic improvement of spelt wheat (Triticum spelta) by interspecific hybridization. Regul. Mech. Biosyst., 15(3), pp. 463-468. https://doi.org/10.15421/022465
9. Dvorak, J., Akhunov, E.D., Akhunov, A.R., Deal, K.R., & Luo, M.C. (2006). Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol. Biol. Evol., 23, pp. 1386-1396. https://doi.org/10.1093/molbev/msl004
10. Salamini, F., љzkan, H., Brandolini, A., Sch¬fer-Pregl, R. & Martin, W. (2002). Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet., 3, pp. 429-441. https://doi.org/10.1038/nrg817
11. Tverdokhlib, O.V., Holik, O.V. & Niniyeva, A.K. (2013). Bohuslavs'kyy & R.L. Spelta i polba v orhanichnomu zemlerobstvi. Posibnyk ukrainskoho khliboroba. pp.154-155 [in Ukrainian].
12. Shelepov, V.V., Gavrilyuk, N.N. & Vergunov, V.A. (2013). Wheat: biology, morphology, selection, seed production. Kyiv: Logos [in Ukrainian].
13. Babenko, L.M., Hospodarenko, H.M., Rozhkov, R.V., Pariy, Y.F., Pariy, M.F., Babenko, A.V. & Kosakivska, I.V. (2018). Triticum spelta: Origin, biological characteristics and perspectives for use in breeding and agriculture. Regul. Mech. Biosyst., 9(2), pp. 250-257. https://doi.org/10.15421/021837
14. Morgun, V.V., Sichkar, S.M., Pochynok, V.M., Ninieva, A.K. & Chuhunkova, T.V. (2016). Characterization of spelt wheat (Triticum spelta L.) collection accessions by performance elements and bread-making quality. Fiziol. rosl. genet., 48, No. 2, pp. 112-119 [in Ukrainian]. https://doi.org/10.15407/frg2016.02.112
15. Chrpova, J., Grausgruber, H., Weyermann, V., Buerstmayr, M., Palicova. J., Kozova, J., TravnПckova, M., Nguyen, Q.T., Moreno Amores, J.E., Buerstmayr, H. & Janovska, D. (2021). Resistance of winter spelt wheat [Triticum aestivum subsp. spelta (L.) Thell.] to fusarium head blight. Front. Plant Sci., 12. https://doi.org/10.3389/fpls.2021.661484
16. Zvedenyuk, T. (2013). Spelt is a cereal from the Stone Age. Grain, 7, pp. 82-90 [in Ukrainian].
17. Salarov, M. & Filip№hev, B. (2020). Spelt vs common wheat: potential advances and benefits. Acta Innovations, 35, pp. 58-65. https://doi.org/10.32933/ActaInnovations.35.4
18. Dinu, M., Whittaker, A., Pagliai, G., Benedettelli, S. & Sofi, F. (2018). Ancient wheat species and human health: Biochemical and clinical implications. J. Nutr. Biochem., 52, pp. 1-9. https://doi.org/10.1016/j.jnutbio.2017.09.001
19. Geisslitz, S., Longin, C.F. H., Scherf, K.A. & Koehler, P. (2019). Comparative study on gluten protein composition of ancient (einkorn, emmer and spelt) and modern wheat species (durum and common wheat). Foods, 8(9), 409. https://doi.org/10.3390/foods8090409
20. Kraska, P., Andruszczak, S., Gawlik-Dziki, U., Dziki, D. & Kwiecinska-Poppe, E. (2020). Wholemeal spelt bread enriched with green spelt as a source of valuable nutrients. Processes, 8(4). https://doi.org/10.3390/pr8040389
21. Huertas-Garcia, A., Tabbita, F., Alvarez, J., Sillero, J. C., Ibba, M., Rakszegi, M. & Guzman, C. (2023). Genetic variability for grain components related to nutritio quality in spelt and common wheat. J. Agricult. Food Chem., 71, pp. 10598-10606. https://doi.org/10.1021/acs.jafc.3c02365
22. Rybalka, O.I., Polyshchuk, S.S., Chervonys, M.V., Morgun, V.V. & Morgun, B.V. (2024). Unique spelt wheat (Triticum aestivum ssp. spelta L.) with dark-purple grain color. Fiziol. rosl. genet., 56, No. 5, pp. 419-430 [in Ukrainian]. https://doi.org/10.15407/frg2024.05.419
23. Escarnot, E., Agneessens, R., Wathelet, B. & Paquot, M. (2010). Quantitative and qualitative study of spelt and wheat fibres in varying milling fractions. Food Chem., 122, pp. 857-863. https://doi.org/10.1016/j.foodchem.2010.02.047
24. Hammed, A.M. & Simsek, S. (2014). Hulled Wheats: A Review of nutritional properties and processing methods. Cereal Chem., 91, pp. 97-104. https://doi.org/10.1094/CCHEM-09-13-0179-RW
25. Filip№ev, B., ћimurina, O., Bodroыa-Solarov, M. & Obreht, D. (2013). Comparison of the bread-making performance of spelt varieties grown under organic conditions in the environment of northern Serbia and their responses to dough strengthening improvers. Hemijska Industrija, 67, pp. 443-453. https://doi.org/10.2298/HEMIND120606083F
26. Longin, F.H., Afzal, M., Pfannstiel, J., Bertsche, U., Melzer, T., Ruf, A., Heger, C., Pfaff, T., Schollenberger, M. & Rodehutscord, M. (2023). Mineral and phytic acid content as well as phytase activity in flours and breads made from different wheat species. Int. J. Mol. Sci., 24(3). https://doi.org/10.3390/ijms24032770
27. Wiwart, M., SzafraXska, A. & Suchowilska, E. (2023). Grain of hybrids between spelt (Triticum spelta L.) and bread wheat (Triticum aestivum L.) as a new raw material for breadmaking. Polish J. Food Nutr. Sci., 73(3), pp. 265-277. https://doi.org/10.31883/pjfns/170870
28. Alvarez, J.B. (2021). Spanish Spelt Wheat: From an Endangered Genetic Resource to a Trendy Crop. Plants, 10(12), 2748. https://doi.org/10.3390/plants10122748
29. European Union. Common Catalogue of Varieties of Agricultural Plant Species. (2019). 37th ed., C 13, Official Journal of European Union: Brussels, Belgium.
30. Diordiieva, I.P., Riabovol, L.O., Riabovol, Ya.S., Serzhuk, O.P., Nakloka, Iu.I., Nakloka, O.P. & Karychkovska, S.P. (2022). Breeding and genetic improvement of soft winter wheat with the use of spelt wheat. Agronomy Res., 1, pp. 91-102. https://lib.udau.edu.ua/ handle/123456789/9215
31. Wang, Y., Wang, Z., Chen, Y., Lan, T., Wang, X., Liu, G., Xin, M., Hu, Z., Yao, Y., Ni, Z., Sun, Q., Guo, W. & Peng, H. (2024). Genomic insights into the origin and evolution of spelt (Triticum spelta L.) as a valuable gene pool for modern wheat breeding. Plant Comm., 5, 100883. https://doi.org/10.1016/j.xplc.2024.100883
32. Rapp, M., Beck, H., Gтtler, H., Heilig, W., Starck, N., RШmer, P., Cuendet, C., Uhlig, F., Kurz, H,, Wтrschum, T. & Longin, C.F.H. Spelt: Agronomy, quality, and favor of its breads from 30 varieties tested across multiple environments. (2017). Crop Sci., 57, No. 2, pp. 739-747. https://doi.org/10.2135/cropsci2016.05.0331
33. Xie, Q., Mayes, S. & Sparkes, D.L. (2015). Spelt as a genetic resource for yield component improvement in bread wheat. Crop Sci., 55, No. 6, pp. 2753-2765. https://doi.org/10.2135/cropsci2014.12.0842
34. Geisslitz, S., Longin, C.F.H., Scherf, K.A. & Koehler, P. (2019). Comparative Study on Gluten Protein Composition of Ancient (Einkorn, Emmer and Spelt) and Modern Wheat Species (Durum and Common Wheat). Foods, 8(9), 409. https://doi.org/10.3390/foods8090409
35. Curzon, A.Y., Kottakota, C., Nashef, K., Abbo, S., Bonfl, D.J., Reifen, R., Bar-El, S., Rabinovich, O., Avneri, A. & Ben-David, R. (2021). Assessing adaptive requirements and breeding potential of spelt under Mediterranean environment. Sci. Reports, 11, 7208. https://doi.org/10.1038/s41598-021-86276-1
36. Greenwood, J.R., Finnegan, E.J., Watanabe, N., Trevaskis, B. & Swain, S.M. (2017). New alleles of the wheat domestication gene Q reveal multiple roles in growth and reproductive development. Development, 144(11), pp. 1959-1965. https://doi.org/10.1242/ dev.146407
37. Zhang, Z., Belcram, H., Magdelenat, G., Couloux, A., Samain, S., Gill, S., Rasmussena, J.B., Barbed, V., Faris, J.D. & Huneau, C. (2011). Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proc. Natl. Acad. Sci. USA, 108 (46), pp. 18737-18742. https://doi.org/10.1073/pnas.1110552108
38. Ratajczak, K., Sulewska, H., Graьyna, S. & Matysik, P. (2020). Agronomic traits and grain quality of selected spelt wheat varieties versus common wheat. J. Crop Improv., 34(5), pp. 654-675. https://doi.org/10.1080/15427528.2020.1761921
39. Rybalka, O.I. (2011). Quality of wheat and her improvement. Kyiv: Logos [in Ukrainian].
40. Yeshchenko, V.O., Kopytko, P.G., Kostogryz, P.V. & Opryshko, V.P. Fundamentals of scientific research in agronomy. Vinnytsia: TD Edelweiss and K [in Ukrainian].
41. Feledyn-Szewczyk, B. (2013). The Influence of Morphological Features of Spelt Wheat Triticum Aestivum Ssp. Spelta and Common Wheat Triticum Aestivum Ssp. Vulgare Varieties on the Competitiveness against Weeds in Organic Farming System. J. Food, Agricult. Environ., 11 (1), pp. 416-421.
42. Yakymchuk, R.A. (2018). Kharakter uspadkuvannia dovzhyny stebla u karlykovykh mutantiv miakoyi ozymoyi pshenytsi, otrymanykh v rayoni ChAES [Character of inheritance of stem length in dwarf mutants of soft winter wheat obtained in the area of the Chernobyl nuclear power plant. Fiziol. rosl. genet., 50, No. 1, pp.46-58 [in Ukrainian]. https://doi.org/10.15407/frg2018.01.046
43. Berry, P. M. & Berry, S. T. (2015). Understanding the genetic control of lodging-associated plant characters in winter wheat (Triticum aestivum L). Euphytica, 205(3), pp. 671-689. https://doi.org/10.1007/s10681-015-1387-2
44. Grant, N.P., Morhan, A., Sandhu, D. & Gill, K.S. (2018). Inheritance and genetic mapping of the reduced height (Rht18) gene in wheat. Plants, 7(3), pp. 58-65. https://doi.org/10.3390/plants7030058
45. De Faris, J., Fellers, J.P., Brooks, S.A. & Gill, B.S. (2003). Bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics, 164, pp.311-321. https://doi.org/10.1093/genetics/164.1.311
46. Abdipour, M., Ebrahimi, M., Izadi-Darbandi, A., Mastrangelo, A.M., Najafian, G., Arshd, Y. & Mirniyam, G. (2016). Association between grain size and shape and quality traits, and path analysis of thousand grain weight in Iranian bread wheat landraces from different geographic regions. Not. Bot. Horti Agrobo, 44, No. 1, pp. 228-236. https://doi.org/10.15835/nbha.44.1.10256
47. Sugar, E., Fodor, N., Sandor, R., Bonis, P., Vida, G. & Arendas, T. (2019). Spelt wheat: An alternative for sustainable plant production at low N-levels. Sustainability, 11, 6726. https://doi.org/10.3390/su11236726
48. Bhave, M. & Morris, C. (2008). Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol. Biol., 66, pp. 205-219. https://doi.org/10.1007/s11103-007-9263-7
49. Kulathunga, J., Reuhs, B.L., Zwinger, S. & Simsek, S. (2021). Comparative Study on Kernel Quality and Chemical Composition of Ancient and Modern Wheat Species: Einkorn, Emmer, Spelt and Hard Red Spring Wheat. Foods, 10(4), 761. https://doi.org/10.3390/foods10040761
50. Mutwali, N.I., Mustafa, A.I., Gorafi, Y.S. & Mohamed, I.A. (2015). Effect of environment and genotypes on the physicochemical quality of the grains of newly developed wheat inbred lines. Food Sci. Nutr., 4, No. 4, pp. 508-520. https://doi.org/10.1002/fsn3.313
51. Garg, M., Mikiko, Y., Hiroyuki, T. & Hisashi, T. (2014). Introgression of useful genes from Thinopyrum intermedium to wheat for improvement of breadmaking quality. Plant Breed., 133, No. 3, pp. 327-334. https://doi.org/10.1111/pbr.12167