Fiziol. rast. genet. 2023, vol. 55, no. 1, 25-45, doi: https://doi.org/10.15407/frg2023.01.025

The effects of growth regulators on the photosynthetic apparatus of the sweet pepper (Capsicum annuum L.) in relation to the productivity

Rogach V.V.1, Stasik О.О.2, Kiriziy D.A.2, Sytnyk S.K.2, Kuryata V.G.1, Rogach T.I.1

  1. Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University 32 Ostrozhsky St., Vinnytsia, 21100, Ukraine
  2. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The effects of growth stimulants 6-benzylaminopurine (6-BAP), gibberellic acid (GA3) and 1-naphthaleneacetic acid (1-NAA) as well as gibberellin inhibitors tebuconazole (EW-250), ethephon (2-chloroethylphosphonic acid, 2-CEPA) and chloromequate chloride (ССС-750), which differ in their action mechanism, on growth, development, leaf apparatus formation, CO2 and H2O gas exchange, photochemical activity of Photosystem II (PSII) and productivity traits of sweet pepper plants were studied. It was shown that treatment with growth stimulants increased, and gibberellin inhibitors decreased the linear sizes of sweet pepper plants of the Antei variety. It was established that all growth regulators, except for 2-CEPA, increased the number and the mass of leaves on the plant. Under the action of all preparations, except for 2-CEPA, the area of the leaves increased. Gibberellin inhibitors and 6-BAP significantly increased the amount of chlorophyll in pepper leaves. However, it decreased under the action of GA3 and did not practically change in treatment with 1-NAA. All growth substances, except GA3, increased the total chlorophyll content in the plant. The impact of growth regulators on the activity of photosynthetic processes was more pronounced at the stage of fruit formation than at the flowering stage. The CO2 assimilation rate at the flowering stage increased under the treatment of 1-NAA, 6-BAP, 2-CEPA and EW-250, but decreased under the action of GA3 and CCC-750. At the same time, all studied growth regulators increased the CO2 assimilation rate at the stage of fruit formation. Changes in the CO2 assimilation rate were closely correlated with changes in stomatal conductance (r = 0.79—0.85). Growth regulators increased transpiration in the light at fruit formation stage while the transpiration in the dark was reduced at the flowering stage. Growth regulators increased the operating quantum efficiency of PSII in the light, photochemical quenching of chlorophyll fluorescence, and intensity of linear electron transport in chloroplasts, and reduced non-photochemical quenching (NPQ) fluorescence. The specified morphological, physiological and biochemical changes in plants of sweet pepper of the Antei variety contributed to improvement of crop productivity traits. The use of growth stimulants 6-BAP and GA3, and retardants EW-250 and ССС-750 was most effective.

Keywords: Capsicum annuum L., growth regulators, morphogenesis, leaf apparatus, chlorophyll, photosynthesis, respiration, chlorophyll fluorescence, productivity

Fiziol. rast. genet.
2023, vol. 55, no. 1, 25-45

Full text and supplemented materials

Free full text: PDF  

References

1. Yang, D., Dong, W., Luo, Y., Song, W., Cai, T., Li, Y., Yin, Y. & Wang, Z. (2017). Effects of exogenous 6-BA on photosynthetic characteristics and endogenous hormone content in wheat leaves under two nitrogen application levels at seedling stage. Scientia Agricultura Sinica, 50, No. 20, pp. 3871-3884. https://doi.org/10.3864/j.issn.0578-1752.2017.20.004

2. Xiao-Тao, D., Yu-Рing, J., Hong, W., Hai-Jun, J., Hong-Мei, Z., Chun-Hong, C. & Ji-Zhu, Y. (2013). Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiologiae Plantarum, 35, No. 5, рр. 1427-1438. https://doi.org/10.1007/s11738-012-1182-9

3. Ahanger, M.A., Alyemeni, M.N., Wijaya, L., Alamri, S.A., Alam, P., Ashraf, M. & Ahmad, P. (2018). Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS One, 13, No. 9. https://doi.org/10.1371/journal.pone.0202175

4. Singh, S. & Prasad, S.M. (2014). Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: Mechanism of toxicity amelioration by kinetin. Scientia Horticulturae, 176, рр. 1-10. https://doi.org/10.1016/j.scienta.2014.06.022

5. Mesejo, C., Rosito, S., Reig, C., Martinez-Fuentes, A. & Agusti, M. (2012). Synthetic auxin 3,5,6-TPA provokes Citrus clementina (Hort. ex Tan) fruitlet abscission by reducing photosynthate availability. Journal of Plant Growth Regulation, 31, No. 2, рр. 186-194. https://doi.org/10.1007/s00344-011-9230-z

6. Wen, Y., Su, S.C., Ma, L.Y. & Wang, X.N. (2018). Effects of gibberellic acid on photosynthesis and endogenous hormones of Camellia oleifera Abel. in 1st and 6th leaves. Journal of Forest Research, 23, No. 5, рр. 309-317. https://doi.org/10.1080/13416979.2018.1512394

7. Fang, S., Gao, K., Hu, W., Wang, S., Chen, B. & Zhou, Z. (2018). Foliar and seed application of plant growth regulators affects cotton yield by altering leaf physiology and floral bud carbohydrate accumulation. Field Crops Research, 231, рр. 105-114. https://doi.org/10.1016/j.fcr.2018.11.012

8. Di Benedetto, A., Galmarini, C. & Tognetti, J. (2015). Effects of combined or single exogenous auxin and/or cytokinin applications on growth and leaf area development in Epipremnum aureum. The Journal of Horticultural Science and Biotechnology, 90, No. 6, рр. 643-654. https://doi.org/10.1080/14620316.2015.11668727

9. Starck, Z., Stahl, E. & Witek-Czupryniska, B. (1987). Responsiveness of tomato plants to growth regulators depends on light and temperature conditions. Journal of Plant Physiology, 128, No. 1-2, рр. 121-131. https://doi.org/10.1016/S0176-1617(87)80186-4

10. Li, J., Guan, Y., Yuan, L., Hou, J., Wang, C., Liu, F., Yang, Y., Lu, Z., Chen, G. & Zhu, S. (2019). Effects of exogenous IAA in regulating photosynthetic capacity, carbohydrate metabolism and yield of Zizania latifolia. Scientia Horticulturae, 253, рр. 276-285. https://doi.org/10.1016/j.scienta.2019.04.058

11. Wang, Y., Gu, W., Xie, T., Li, L., Sun, Y., Zhang, H., Li, J. & Wei, S. (2016). Mixed compound of DCPTA and CCC increases maize yield by improving plant morphology and up-regulating photosynthetic capacity and antioxidants. PLoS One, 11, No. 2. https://doi.org/10.1371/journal.pone.0149404

12. Yooyongwech, S., Samphumphuang, T., Tisarum, R., Theerawitaya, C. & Cha-Um, S. (2017). Water-deficit tolerance in sweet potato (Ipomoea batatas (L.) Lam.) by foliar application of paclobutrazol: role of soluble sugar and free proline. Frontiers in Plant Science, 8, р. 1400. https://doi.org/10.3389/fpls.2017.01400

13. Gomathinayagam, M., Jaleel, C.A., Lakshmanan, G.A. & Panneerselvam, R. (2007). Changes in carbohydrate metabolism by triazole growth regulators in cassava (Manihot esculenta Crantz); effects on tuber production and quality. Comptes Rendus Biologies, 330, No. 9, рр. 644-655. https://doi.org/10.1016/j.crvi.2007.06.002

14. Kaneko, T. & Suzuki, S. (2006). Effects of high temperature and growth retardant on dry matter accumulation, hypocotyl thickening, photosynthesis, and sugar content in radish (Raphanus sativus L.) plants. Journal of the Japanese Society for Horticultural Science, 75, No. 3, рр. 231-235. https://doi.org/10.2503/jjshs.75.231

15. Tavares, S. & Lucchesi, A.A. (1999). Plant regulators in potato cv. Monalisa, after tuberization. Scientia Agricola, 56, рр. 975-980. https://doi.org/10.1590/S0103-90161999000400027

16. Li, L.L., Gu, W.R., Li, C.F., Li, W.H., Chen, X.C., Zhang, L.G. & Wei, S. (2019). Dual application of ethephon and DCPTA increases maize yield and stalk strength. Agronomy Journal, 111, No. 2, рр. 612-627. https://doi.org/10.2134/agronj2018.06.0363

17. Dospekhov, B.A. (1985). Methods of field experiment. Moscow: Agropromizdat [in Russian].

18. Kazakov, E.A. (2000). Methodological bases of the experiment on plant physiology. Kyiv: Phytosociocenter [in Ukrainian].

19. Gavrilenko, V.F., Ladygina, M.E. & Handobina, M.N. (1975). Big practicum on plant physiology. Moscow: Vysshaya shkola [in Russian].

20. Mokronosov, A.T. & Kovalev, A.G. (Eds.). (1989). Photosynthesis and bioproductivity: methods of determination. Moskow: Agropromizdat [in Russian].

21. Murchie, E.H. & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64, No. 13, pp. 3983-3998. https://doi.org/10.1093/jxb/ert208

22. Jabir, B., Karanja, B., Faroug, M., Awad, F., Everlyne, M., Ahmadzai, Z. & Liu, LW. (2017). Effects of gibberellin and gibberellin biosynthesis inhibitor (paclobutrazol) applications on radish (Raphanus sativus L.) taproot expansion and the presence of authentic hormones. International Journal of Agriculture and Biology, 19, No. 4, рр. 779-786. https://doi.org/10.17957/IJAB/15.0359

23. Maboko, M.M. & Du Plooy, C.P. (2015). Effect of plant growth regulators on growth, yield, and quality of sweet pepper plants grown hydroponically. HortScience, 50, No. 3, рр. 383-386. https://doi.org/10.21273/HORTSCI.50.3.383

24. Phawa, T., Prasad, V.M. & Rajwade, V.B. (2017). Effect of plant growth regulators on growth and flowering of pomegranate (Punica granatum L.) cv. Kandhari in Allahabad agro-climatic conditions. International Journal of Current Microbiology and Applied Sciences, 6, No. 8, рр. 116-121. https://doi.org/10.20546/ijcmas.2017.608.015

25. Ewais, E.E.D. (2013). Effect of ascorbic acid, benzyl adenine and paclobutrazol on growth, yield and some metabolic constituents of sunflower plants. Journal of Pharmaceutical Sciences, 47, No. 1, рр. 12-21. https://doi.org/10.21608/ajps.2013.7105

26. Sood, M.K., Kachawaya, D.S. & Singh, M.C. (2018). Effect of Bio-Fertilizers and plant growth regulators on growth, flowering, fruit ion content, yield and fruit quality of strawberry. International Journal of Agriculture, Environment and Biotechnology, 11, No. 3, рр. 439-449. https://doi.org/10.30954/0974-1712.06.2018.4

27. Deepak, J., Thaneshwari, T., Sushil, N. & Neeru, J. (2018). Effect of plant growth regulator on growth, yield & quality of tomato (Solanum lycopersicum) cultivar 'Shivaji' under punjab condition. International Journal of Current Microbiology and Applied Sciences, 7, No. 6, рр. 2630-2636. https://doi.org/10.20546/ijcmas.2018.706.311

28. Ulvskov, P., Nielsen, T.H., Seiden, P. & Marcussen, J. (1992). Cytokinins and leaf development in sweet pepper (Capsicum annuum L.). Planta, 188, No. 1, рр. 78-84. https://doi.org/10.1007/BF01160714

29. Kashid, D.A., Doddamani, M., Chetti, M., Hiremath, S. & Baburai, N.A.K. (2010). Effect of growth retardants on morpho-physiological traits and yield in sunflower. Karnataka Journal of Agricultural Sciences, 23, No. 2, рр. 347-349.

30. Kuryata, V.G., Polyvanyi, S.V., Rogach, T.I., Khodanytska, O.O. & Rogach V.V. (2019). Influence of chlormequat chloride on morphogenesis, formation of donor-acceptor system and production process of oil crops. In Babych M.M. (Ed.) The Potential of Modern Science. Vol. 1. (рр. 130-156). London: Sciemcee Publishing. http://repository.vsau.org/getfile.php/23281.pdf

31. Aldesuquy, H. (2015). Synergistic effect of phytohormones on pigment and fine structure of chloroplasts in flag leaf of wheat plants irrigated by seawater. Egyptian Journal of Basic and Applied Sciences, 2, No. 4, рр. 310-317. https://doi.org/10.1016/j.ejbas.2015.07.002

32. Chaudhary, B.R., Sharma, M.D., Shakya, S.M. & Gautam, D.M. (2006). Effect of plant growth regulators on growth, yield and quality of chilli (Capsicum annuum L.) at Rampur, Chitwan. Journal of the Institute of Agriculture and Animal Science, No. 27, рр. 65-68. https://doi.org/10.3126/jiaas.v27i0.697

33. Ren B., Zhang J., Dong S., Liu P., Zhao B. Regulations of 6-benzyladenine (6-BA) on leaf ultrastructure and photosynthetic characteristics of waterlogged summer maize. Journal of Plant Growth Regulation. 2017. 36. P. 743-754. https://doi.org/10.1007/s00344-017-9677-7

34. Ferrari, J.V., Furlani Junior, E., Ferrari, S. & Luques, A.P.P.G. (2015). Vegetative growth response of cotton plants due to growth regulator supply via seeds. Acta Scientiarum. Agronomy, No. 37, рр. 361-366. https://doi.org/10.4025/actasciagron.v37i3.19664

35. Hussein, M.M., Bakheta, M.A. & Zaki, S.N.S. (2014). Influence of uniconazole on growth characters, photosynthetic pigments, total carbohydrates and total soluble sugars of Hordium vulgare L. plants grown under salinity stress. International Journal of Science and Research, 3. No. 12, рр. 2208-2213.

36. Rohach, V.V., Kiriziy, D.A., Stasik, O.O. & Rohach, T.I. (2020). Morphogenesis, photosynthesis and productivity of eggplants under the influence of growth regulators with various action mechanisms. Fiziologhija roslyn i genetyka, 52, No. 2, рр. 152-168 [in Ukrainian]. https://doi.org/10.15407/frg2020.02.152

37. Feng, Z., Zhao, J., Nie, M., Qu, F., Li, X. & Wang, J. (2023). Effects of exogenous auxin on yield in foxtail millet (Setaria italica L.) when applied at the grain filling stage. Frontiers in Plant Science, 13, p. 1019152. https://doi.org/10.3389/fpls.2022.1019152

38. Wu, H., Xiang, J., Chen, H.Z., Zhang, Y.P., Zhang, Y.K. & Zhu, F. (2018). Effects of exogenous growth regulators on plant elongation and carbohydrate consumption of rice seedlings under submergence. The Journal of Applied Ecology, 29, No. 1, рр. 149-157. https://doi.org/10.13287/j.1001-9332.201801.021

39. Carvalho, M.E.A., Castro, P.R.D. C. & Dias, C.T.D.S. (2013). Plant growth reducers: an alternative to increase the juice production potential and decrease the lodging of sweet sorghum. American-Eurasian Journal of Agricultural and Environmental Science, 13, рр. 774-777. https://doi.org/10.5281/zenodo.51611

40. Faralli, M. & Lawson, T. (2020). Natural genetic variation in photosynthesis: an untapped resource to increase crop yield potential? The Plant Journal, 101, No. 3, pp. 518-528. https://doi.org/10.1111/tpj.14568

41. Nadal, M. & Flexas, J. (2019). Variation in photosynthetic characteristics with growth form in a water-limited scenario: Implications for assimilation rates and water use efficiency in crops. Agricultural Water Management, 216, pp. 457-472. https://doi.org/10.1016/j.agwat.2018.09.024

42. Feng, X., Lu, Y., Jiang, M., Katul, G., Manzoni, S., Mrad, A. & Vico G. (2022). Instantaneous stomatal optimization results in suboptimal carbon gain due to legacy effects. Plant, Cell and Environment, 45, pp. 3189-3204. https://doi.org/10.1111/pce.14427

43. Rohach, V.V., Kiriziy, D.A., Kuryata, V.G. & Rohach, T.I. (2022). Morphogenesis, photosynthesis and productivity of pepper (Capsicum annuum L.) under the impact of growth substances with different directions and mechanisms of action. Fiziol. rast. genet., 54, No. 3, рр. 214-232 [in Ukrainian]. https://doi.org/10.15407/frg2022.03.214

44. Stasik, O.O. (2014). Photorespiration: metabolism and physiological role. In Modern problems of photosynthesis (Vol. 2, pp. 505-535). Moskow-Izhevsk: Institute of Computer Research [in Russian].

45. Kiriziy, D.A., Stasik, O.O., Pryadkina, G.A. & Shadchina, T.M. (2014). Photosynthesis: Assimilation of CO2 and the mechanisms of its regulation. Vol. 2. Kyiv: Logos [in Russian].