Fiziol. rast. genet. 2023, vol. 55, no. 5, 395-416, doi: https://doi.org/10.15407/frg2023.05.395

Participation of autophagy in the response of plants to the action of abiotic stressors

Guralchuk Zh.Z.1, Gurianov D.S.1,2

  1. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukrainee
  2. Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine 150 Zabolotnogo St., Kyiv, 03143, Ukraine

The data on the process of plant autophagy, its importance for the functioning of plants under optimal and stressful conditions are reviewed. Autophagy, a highly intricate and conserved process, remains at a basal level under optimal conditions, and is induced when plants fall under stress. This process stands as one of the central mechanisms enabling plants to adapt to adverse environmental factors. The activation of autophagy in response to various abiotic stressors, encompassing extreme temperatures, salinity, drought, nutrient deprivation, and herbicides is discussed. The regulatory mechanisms of autophagy are thoroughly considered, encompassing post-translational protein modifications crucial for its activation and progression, transcriptional regulation, and signaling through phytohormones. The pivotal role of autophagy activation is underscored in eliminating damaged organelles, and providing vital nutrients required for plant functionality and survival when exposed to abiotic stressors. Furthermore, the potential involvement of autophagy in herbicide-induced pathogenesis is discussed, with a dual perspective: its potential role in regulating programmed cell death (PCD), and its role in mitigating herbicide effects through the plant’s homeostatic resistance mechanisms.

Keywords: autophagy, abiotic factors, herbicides

Fiziol. rast. genet.
2023, vol. 55, no. 5, 395-416

Full text and supplemented materials

Free full text: PDF  

References

1. Signorelli, S., Tarkowski, L.P., Van den Ende, W. & Bassham, D.C. (2019). Linking autophagy to abiotic and biotic stress responses. Trends in Plant Sci., 24, pp. 413-430. https://doi.org/10.1016/j.tplants.2019.02.001

2. Marshall, R.S. & Vierstra, R.D. (2018). Autophagy: the master of bulk and selective recycling. Annu. Rev. Plant Biol., 29, No. 69, pp. 173-208. https://doi.org/10.1146/annurev-arplant-042817-040606

3. Ohsumi, Y. (2014). Historical landmarks of autophagy research. Cell Res., 24, pp. 9-23. https://doi.org/10.1038/cr.2013.169

4. Matsuura, A., Tsukada, M., Wada, Y. & Ohsumi, Y. (1997). Apgip, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192, pp. 245-250. https://doi.org/10.1016/S0378-1119(97)00084-X

5. Yoshimoto, K. & Ohsumi, Y. (2018). Unveiling the molecular mechanisms of plant autophagy - from autophagosomes to vacuoles in plants. Plant Cell Physiol., 59, No. 7, pp. 1337-1344. https://doi.org/10.1093/pcp/pcy112

6. Liu, Y. & Bassham, D.C. (2012). Autophagy: pathways for self-eating in plant cells. Annu Rev. Plant Biol., 63, pp. 215-237. https://doi.org/10.1146/annurev-arplant-042811-105441

7. Chen, H., Dong, J. & Wang, T. (2021). Autophagy in plant abiotic stress management. Int. J. Mol. Sci., 22, 4075. https://doi.org/10.3390/ijms22084075

8. Chung, T. (2019). How phosphoinositides shape autophagy in plant cells. Plant Sci., 281, pp. 146-158. https://doi.org/10.1016/j.plantsci.2019.01.017

9. Fang, Y., Wang, S., Wu, H., Li, C., Zhao, H., Chen, H., Wang, X. & Wu, Q. (2022). Genome-wide identification of ATG gene family members in fagopyrum tataricum and their expression during stress responses. Int. J. Mol. Sci., 23, 14845. https://doi.org/10.3390/ijms232314845

10. Xia, K., Liu, T., Ouyang, J., Wang, R., Fan, T. & Zhang, M. (2011). Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res., 18, pp. 363-377. https://doi.org/10.1093/dnares/dsr024

11. Huang, W., Ma, D.N., Liu, H.L., Luo, J., Wang, P., Wang, M.L., Guo, F., Wang, Y., Zhao, H. & Ni, D.J. (2020). Genome-wide identification of CsATGs in tea plant and the involvement of CsATG8e in nitrogen utilization. Int. J. Mol. Sci., 21, 7043. https://doi.org/10.3390/ijms21197043

12. Yang, X., & Bassham, D.C. (2015). New insight into the mechanism and function of autophagy in plant cells. Int. Rev. Cell Mol. Biol., 320, pp. 1-40. https://doi.org/10.1016/bs.ircmb.2015.07.005

13. Vierstra, R.D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci., 8, No. 3, pp. 135-142. https://doi.org/10.1016/S1360-1385(03)00014-1

14. Svenning, S. & Johansen, T. (2013). Selective autophagy. Essays Biochem., 55, pp. 79-92. https://doi.org/10.1042/bse0550079

15. Hafren, A., Macia, J.L., Love, A.J., Milner, J.J., Drucker, M. & Hofius, D. (2017). Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc. Natl. Acad. Sci. USA, 114, E2026-E2035. https://doi.org/10.1073/pnas.1610687114

16. van Doorn, W.G. & Papini, A. (2013). The ultra-structure of autophagy in plant cells: a review. Autophagy, 9, pp. 1922-1936. https://doi.org/10.4161/auto.26275

17. Bu, F., Yang, M., Guo, X., Huang, W. & Chen, L. (2020). Multiple functions of ATG8 family proteins in plant autophagy. Front. Cell Dev. Biol., 8, 466. https://doi.org/10.3389/fcell.2020.00466

18. Soto-Burgos, J., Zhuang, X., Jiang, L. & Bassham, D.C. (2018). Dynamics of autophagosome formation. Plant Physiol., 176, pp. 219-229. https://doi.org/10.1104/pp.17.01236

19. Su, T., Li, X., Yang, M., Shao, Q., Zhao, Y., Ma, C. & Wang, P. (2020). Autophagy: an intracellular degradation pathway regulating plant survival and stress response. Front. Plant Sci., 11, 164. https://doi.org/10.3389/fpls.2020.00164

20. Agbemafle, W., Wong, M.M. & Bassham, D.C. (2023). Transcriptional and post-translational regulation of plant autophagy. J. Exp. Bot., 26. https://doi.org/10.1093/jxb/

21. Suttangkakul, A., Li, F., Chung, T. & Vierstra, R.D. (2011). The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. The Plant Cell, 23, pp. 3761-3779. https://doi.org/10.1105/tpc.111.090993

22. Li, F., Chung, T. & Vierstra, R.D. (2014). AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. Plant Cell, 26, pp. 788-807. https://doi.org/10.1105/tpc.113.120014

23. Liu, F., Hu, W., Li, F., Marshall, R.S., Zarza, X., Munnik, T. & Vierstra, R.D. (2020). AUTOPHAGY-RELATED14 and its associated hosphatidylinositol 3-kinase complex promotes autophagy in Arabidopsis. Plant Cell, 32, pp. 3939-3960. https://doi.org/10.1105/tpc.20.00285

24. Bhati, K.K., Luong, A.M. & Batoko, H. (2021). VPS34 complexes in plants: untangled enough? Trends in Plant Sci., 26, pp. 303-305. https://doi.org/10.1016/j.tplants.2021.02.001

25. Zhuang, X., Chung, K.P., Cui, Y., Lin, W., Gao, C., Kang, B.-H. & Jiang, L. (2017). ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proceedings of the National Academy of Sci., USA, 114, E426-E435. https://doi.org/10.1073/pnas.1616299114

26. Kang, S., Shin, K.D., Kim, J.H. & Chung, T. (2018). Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in Arabidopsis. Plant Cell Rep., 37, pp. 653-664. https://doi.org/10.1007/s00299-018-2258-9

27. Feng, Y., He, D., Yao, Z. & Klionsky, D.J. (2013). The machinery of macroautophagy. Cell Res., 24, pp. 24-41. https://doi.org/10.1038/cr.2013.168

28. Slavikova, S., Shy, G., Yao, Y., Glozman, R., Levanony, H., Pietrokovski, S., Elazar, Z. & Galili, G. (2005). The autophagy-associated Atg8 gene family operates both under favorable growth conditions and under starvation stress in Arabidopsis plants. J. Exp. Bot., 56, pp. 2839-2849. https://doi.org/10.1093/jxb/eri276

29. Chung, T., Suttangkakul, A. & Vierstra, R.D. (2009). The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol., 149, pp. 220-234. https://doi.org/10.1104/pp.108.126714

30. Kellner, R., De la Concepcion, J.C., Maqbool, A., Kamoun, S. & Dagdas, Y.F. (2017). ATG8 Expansion: a driver of selective autophagy diversification? Trends in Plant Sci., 22(3), pp. 204-214. https://doi.org/10.1016/j.tplants.2016.11.015

31. Johansen, T. & Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7, pp. 279-296. https://doi.org/10.4161/auto.7.3.14487

32. Thompson, A.R. & Vierstra, R.D. (2005). Autophagic recycling: lessons from yeast help define the process in plants. Curr. Opin. Plant Biol., 8, pp. 165-173. https://doi.org/10.1016/j.pbi.2005.01.013

33. Izumi, M., Ishida, H., Nakamura, S. & Hidema, J. (2017). Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. The Plant Cell, 29, pp. 377-394. https://doi.org/10.1105/tpc.16.00637

34. Nakamura, S., Hagihara, S., Otomo, K., Ishida, H., Hidema, J., Nemoto, T. & Izumi, M. (2021). Autophagy contributes to the quality control of leaf mitochondria. Plant & Cell Physiol., 62, pp. 229-247. https://doi.org/10.1093/pcp/pcaa162

35. Liu, Y., Burgos, J.S., Deng, Y., Srivastava, R., Howell, S.H. & Bassham, D.C. (2012). Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. The Plant Cell., 24, pp. 4635-4651. https://doi.org/10.1105/tpc.112.101535

36. Howell, S.H. (2013). Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol., 64, pp. 477-499. https://doi.org/10.1146/annurev-arplant-050312-120053

37. Chen, Y. & Yu, X. (2023). Endoplasmic reticulum stress-responsive microRNAs are involved in the regulation of abiotic stresses in wheat. Plant Cell Rep., 42, pp. 1433-1452. https://doi.org/10.1007/s00299-023-03040-7

38. Wang, J., Zhang, Q., Bao, Y. & Bassham, D.C. (2023). Autophagic degradation of membrane-bound organelles in plants. Biosci. Rep., 43, BSR20221204. https://doi.org/10.1042/BSR20221204

39. Kim, J., Lee, H., Lee, H.N., Kim, S.H., Shin, K.D. & Chung, T. (2013). Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth. Plant Cell, 25, pp. 4956-4966. https://doi.org/10.1105/tpc.113.117960

40. Lee, H.N., Kim, J. & Chung, T. (2014). Degradation of plant peroxisomes by autophagy. Front Plant Sci., 8, No. 5, 139. https://doi.org/10.3389/fpls.2014.00139

41. Young, P.G. & Bartel, B. (2016). Pexophagy and peroxisomal protein turnover in plants. Biochim. Bio. Acta, 1863, 5, pp. 999-1005. https://doi.org/10.1016/j.bbamcr.2015.09.005

42. Floyd, B.E., Morriss, S.C., MacIntosh, G.C. & Bassham, D.C. (2015). Evidence for autophagy-dependent pathways of rRNA turnover in Arabidopsis. Autophagy, 11, pp. 2199-2212. https://doi.org/10.1080/15548627.2015.1106664

43. Bassham, D.C. & MacIntosh, G.C. (2017). Degradation of cytosolic ribosomes by autophagy-related pathways. Plant Sci., 262, pp. 169-174. https://doi.org/10.1016/j.plantsci.2017.05.008

44. Kazibwe, Z., Lium, A.Y., MacIntosh, G.C. & Bassham, D.C. (2019). The ins and outs of autophagic ribosome turnover. Cells, 8, No. 12, 1603. https://doi.org/10.3390/cells8121603

45. Marshall, R.S., Li, F., Gemperline, D.C., Book, A.J. & Vierstra, R.D. (2015). Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell, 58, pp. 1053-1066. https://doi.org/10.1016/j.molcel.2015.04.023

46. Xiong, Q., Feng, R., Fischer, S., Karow, M., Xiong, M., Mebling, S., Nitz, L., Mтller, S., Clemen, C.S., Song, N., Li, P., Wu, C. & Eichinger, L. (2023). Proteasomes of autophagy-deficient cells exhibit alterations in regulatory proteins and a marked reduction in activity. Cells, 12, No. 11, 1514. https://doi.org/10.3390/cells12111514

47. Zhou, J., Wang, J., Cheng, Y., Chi, Y.J., Fan, B., Yu, J.Q. & Chen, Z. (2013). NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet., 9, e1003196. https://doi.org/10.1371/journal.pgen.1003196

48. Zhou, J., Wang, J., Yu, J.Q. & Chen, Z. (2014). Role and regulation of autophagy in heat stress responses of tomato plants. Front. Plant Sci., 5, 174. https://doi.org/10.3389/fpls.2014.00174

49. Zhang, Y. & Chen, Z. (2020). Broad and complex roles of NBR1-mediated selective autophagy in plant stress responses. Cells, 9, No. 12, 2562. https://doi.org/10.3390/cells9122562

50. Wada, S., Hayashida, Y., Izumi, M., Kurusu, T., Hanamata, S., Kanno, K., Kojima, S., Yamaya, T., Kuchitsu, K., Makino, A. & Ishida, H. (2015). Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiol., 168, 1, pp. 60-73. https://doi.org/10.1104/pp.15.00242

51. Guiboileau, A., Avila-Ospina, L., Yoshimoto, K., Soulay, F., Azzopardi, M., Marmagne, A., Lothier, J. & Masclaux-Daubresse, C. (2013). Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. New Phytol., 199, pp. 683-694. https://doi.org/10.1111/nph.12307

52. Cao, J., Zheng, X., Xie, D., Zhou, H., Shao, S. & Zhou, J. (2022). Autophagic pathway contributes to low-nitrogen tolerance by optimizing nitrogen uptake and utilization in tomato. Hortic. Res., 9, uhac068. https://doi.org/10.1093/hr/uhac068

53. Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B. & Dinesh- Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell, 121, pp. 567-577. https://doi.org/10.1016/j.cell.2005.03.007

54. Kwon, S.I., Cho, H.J., Kim, S.R. & Park, O.K. (2013). The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol., 161, pp. 1722-1736. https://doi.org/10.1104/pp.112.208108

55. Leary, A.Y., Sanguankiattichai, N., Duggan, C., Tumtas, Y., Pandey, P., Segretin, M.E., Salguero Linares, J., Savage, Z.D., Yow, R.J. & Bozkurt, T.O. (2018). Modulation of plant autophagy during pathogen attack. J. Exp. Bot., 69, pp. 1325-1333. https://doi.org/10.1093/jxb/erx425

56. Jeon, H.S., Jang, E., Kim, J., Kim, S.H., Lee, M.H., Nam, M.H., Tobimatsu, Y. & Park, O.K. (2023). Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity. Autophagy, 19, pp. 597-615. https://doi.org/10.1080/15548627.2022.2085496

57. Farrѕ, J.C. & Subramani, S. (2016). Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat. Rev. Mol. Cell Biol., 17, pp. 537-552. https://doi.org/10.1038/nrm.2016.74

58. Maqbool, A., Hughes, R.K., Dagdas, Y.F., Tregidgo, N., Zess, E., Belhaj, K., Round, A., Bozkurt, T.O., Kamoun, S. & Banfield, M.J. (2016). Structural basis of host autophagy-related protein 8 (ATG8) binding by the irish potato famine pathogen effector protein PexRD54. J. Biol. Chem., 291, 20270-20282. https://doi.org/10.1074/jbc.M116.744995

59. Wang, P., Mugume, Y. & Bassham, D.C. (2018). New advances in autophagy in plants: regulation, selectivity and function. Seminars in Cell & Develop. Biol., 80, pp. 113-122. https://doi.org/10.1016/j.semcdb.2017.07.018

60. Yang, X., Srivastava, R., Howell, S.H. & Bassham, D.C. (2016). Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. Plant J., 85, pp. 83-95. https://doi.org/10.1111/tpj.13091

61. Zhai, Y., Guo, M., Wang, H., Lu, J., Liu, J., Zhang, C., Gong, Z. & Lu, M. (2016). Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L. Front Plant Sci., 7, 131. https://doi.org/10.3389/fpls.2016.00131

62. Sedaghatmehr, M., Thirumalaikumar, V.P., Kamranfar, I., Marmagne, A., Masclaux-Daubresse, C. & Balazadeh, S. (2019). A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ., 42, pp. 1054-1064. https://doi.org/10.1111/pce.13426

63. Zhou, J., Ma, J., Yang, C., Zhu, X., Li, J., Zheng, X., Li, X., Chen, S., Feng, L., Wang, P., Ho, M.I., Ma, W., Liao, J., Li, F., Wang, C., Zhuang, X., Jiang, L., Kang, B.H. & Gao C. (2023). A non-canonical role of ATG8 in golgi recovery from heat stress in plants. Nat. Plants, 9, pp. 749-765. https://doi.org/10.1038/s41477-023-01398-w

64. Zhao, W., Song, J., Wang, M., Chen, X., Du, B., An, Y., Zhang, L., Wang, D. & Guo, C. (2023). Alfalfa MsATG13 confers cold stress tolerance to plants by promoting autophagy. Int. J. Mol. Sci., 24, 12033. https://doi.org/10.3390/ijms241512033

65. Rana, R.M., Dong, S., Ali, Z., Huang, J. & Zhang, H.S. (2012). Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Genet. Mol. Res., 11, 3676-3687. https://doi.org/10.4238/2012.August.17.3

66. Tang, J. & Bassham, D.C. (2021). Autophagy during drought: function, regulation, and potential application. Plant J., 109(2), 390-401. https://doi.org/10.1111/tpj.15481

67. Liu, Y., Xiong, Y. & Bassham, D.C. (2009). Autophagy is required for tolerance of drought and salt stress in plants. Autophagy, 5, pp. 954-963. https://doi.org/10.4161/auto.5.7.9290

68. Zhu, T., Zou, L., Li, Y., Yao, X., Xu, F., Deng, X., Zhang, D. & Lin, H. (2018). Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. Plant Bio. J., 16, pp. 2063-2076. https://doi.org/10.1111/pbi.12939

69. Li, Y.B., Cui, D.Z., Sui, X.X., Huang, C., Huang, C.Y. & Fan, Q.Q. (2019). Autophagic survival precedes programmed cell death in wheat seedlings exposed to drought stress. Int. J. Mol. Sci., 20, 5777. https://doi.org/10.3390/ijms20225777

70. Sun, X., Wang, P., Jia, X., Huo, L., Che, R. & Ma, F. (2017). Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Bio. J., 16(2), pp. 545-557. https://doi.org/10.1111/pbi.12794

71. Jia, X., Gong, X., Jia, X., Li, X., Wang, Y., Wang, P., Huo, L., Sun, X., Che, R., Li, T., Zou, Y. & Ma, F. (2021). Overexpression of MdATG8i enhances drought tolerance by alleviating oxidative damage and promoting water uptake in transgenic apple. Int. J. Mol. Sci., 22, 5517. https://doi.org/10.3390/ijms22115517

72. Jia, X., Mao, K., Wang, P., Wang, Y., Jia, X., Huo, L., Sun, X., Che, R., Gong, X. & Ma, F. (2021). Overexpression of MdATG8i improves water use efficiency in transgenic apple by modulating photosynthesis, osmotic balance, and autophagic activity under moderate water deficit. Hortic. Res., 8, 81. https://doi.org/10.1038/s41438-021-00521-2

73. Wang, Y., Cai, S., Yin, L., Shi, K., Xia, X., Zhou, Y., Yu, J. & Zhou, J. (2015). Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. Autophagy, 11, 2033-2047. https://doi.org/10.1080/15548627.2015.1098798

74. Wang, X., Gao, Y., Wang, Q., Chen, M., Ye, X., Li, D., Chen X., Li, L. & Gao, D. (2019). 24-Epibrassinolide-alleviated drought stress damage influences antioxidant enzymes and autophagy changes in peach (Prunus persicae L.) leaves. Plant Physiol. Bio., 135, pp. 30-40. https://doi.org/10.1016/j.plaphy.2018.11.026

75. Yang, M., Wang, L., Chen, C., Guo, X., Lin, C., Huang, W. & Chen, L. (2021). Genome-wide analysis of autophagy-related genes in Medicago truncatula highlights their roles in seed development and response to drought stress. Sci. Rep., 11, 22933. https://doi.org/10.1038/s41598-021-02239-6

76. Hachez, C., Veljanovski, V., Reinhardt, H., Guillaumot, D., Vanhee, C., Chaumont, F. & Batoko, H. (2014). The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. Plant Cell, 26, pp. 4974-4990. https://doi.org/10.1105/tpc.114.134080

77. Li, X., Liu, Q., Feng, H., Deng, J., Zhang, R., Wen, J., Dong, J. & Wang, T. (2020). Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy, 16, pp. 862-877. https://doi.org/10.1080/15548627.2019.1643656

78. Bao, Y. (2020). Links between drought stress and autophagy in plants. Plant Signaling & Behavior, 15, 1779487. https://doi.org/10.1080/15592324.2020.1779487

79. Bao, Y., Song, W.-M., Wang, P., Yu, X., Li, B., Jiang, C., Shiu, S. H., Zhang, H. & Bassham, D.C. (2020). COST1 regulates autophagy to control plant drought tolerance. Proc. Natl Acad. Sci., 117, pp. 7482-7493. https://doi.org/10.1073/pnas.1918539117

80. Huo, L., Guo, Z., Jia, X., Sun, X., Wang, P., Gong, X. & Ma, F. (2020). Increased autophagic activity in roots caused by overexpression of the autophagy-related gene MdATG10 in apple enhances salt tolerance. Plant Sci., 294, 110444. https://doi.org/10.1016/j.plantsci.2020.110444

81. Huo, L., Guo, Z., Wang, P., Zhang, Z., Jia, X., Sun, Y., Sun, X., Gong, X. & Ma, F. (2020). MdATG8i functions positively in apple salt tolerance by maintaining photosynthetic ability and increasing the accumulation of arginine and polyamines. Env. Exp. Bot., 172, 103989. https://doi.org/10.1016/j.envexpbot.2020.103989

82. Luo, L., Zhang, P., Zhu, R. Fu, J., Su, J., Zheng, J., Wang, Z., Wang, D. & Gong, Q. (2017). Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis. Front Plant Sci., 8, 1459. https://doi.org/10.3389/fpls.2017.01459

83. Moriyasu, Y. & Ohsumi, Y. (1996). Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol., 111, pp. 1233-1241. https://doi.org/10.1104/pp.111.4.1233

84. Tasaki, M., Asatsuma, S. & Matsuoka, K. (2014). Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells. Front. Plant Sci., 5. https://doi.org/10.3389/fpls.2014.00172

85. Toyooka, K., Takeuchi, M., Moriyasu, Y., Fukuda, H. & Matsuoka, K. (2006). Protein aggregates are transported to vacuoles by macroautophagic mechanism in nutrient-starved plant cells. Autophagy, 2, pp. 91-106. https://doi.org/10.4161/auto.2.2.2366

86. Takatsuka, Ch., Inoue, Yu., Higuchi, T., Hillmer, S., Robinson, D.G. & Moriyasu, Yu. (2011). Autophagy in tobacco BY-2 cells cultured under sucrose starvation conditions: isolation of the autolysosome and its characterization. Plant Cell Physiol., 52(12), pp. 2074-2087. https://doi.org/10.1093/pcp/pcr137

87. Guiboileau, A., Yoshimoto, K., Soulay, F., Bataille, M.P., Avice, J.C. & Masclaux-Daubresse, C. (2012). Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol., 194, pp. 732-740. https://doi.org/10.1111/j.1469-8137.2012.04084.x

88. Wang, P., Nolan, T.M., Yin, Y. & Bassham, D.C. (2020). Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. Autophagy, 16, pp. 123-139. https://doi.org/10.1080/15548627.2019.1598753

89. Lornac, A., Haveѕ, M., Chardon, F., Soulay, F., Clѕment, G., Avice, J.-Ch. & Masclaux-Daubresse, C. (2020). Autophagy controls sulphur metabolism in the rosetta leaves of arabidopsis and facilitates S remobilization that the seeds. Cells, 9, 332. https://doi.org/10.3390/cells9020332

90. Pottier, M., Dumont, J., Masclaux-Daubresse, C. & Thomine, S. (2019). Autophagy is essential for optimal translocation of iron to seeds in Arabidopsis. J. Exp. Bot., 70, pp. 859-869. https://doi.org/10.1093/jxb/ery388

91. Li, F., Chung, T., Pennington, J.G., Federico, M.L., Kaeppler, H.F., Kaeppler, S.M., Otegui, M.S. & Vierstra, R.D. (2015). Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell, 27, pp. 1389-1408. https://doi.org/10.1105/tpc.15.00158

92. Naumann, C., Mтller, J., Sakhonwasee, S., Wieghaus, A. Hause, G., Heisters, M., Bтrstenbinder, K. & Abel, S. (2019). The local phosphate deficiency response activates endoplasmic reticulum stress-dependent autophagy. Plant Physiol., 179, pp. 460-476. https://doi.org/10.1104/pp.18.01379

93. Yoshitake, Y., Nakamura, S., Shinozaki, D., Izumi, M., Yoshimoto, K., Ohta, H. & Shimojima, M. (2021). RCB-mediated chlorophagy caused by oversupply of nitrogen suppresses phosphate-starvation stress in plants. Plant Physiol., 185, pp. 318-330. https://doi.org/10.1093/plphys/kiaa030

94. Yoshitake, Y., Shinozaki, D. & Yoshimoto, K. (2022). Autophagy triggered by iron-mediated ER stress is an important stress response to the early phase of Pi starvation in plants. Plant J., 110, pp. 1370-1381. https://doi.org/10.1111/tpj.15743

95. Yoshitake, Y. & Yoshimoto, K. (2023). Intracellular phosphate recycling systems for survival during phosphate starvation in plants. Front Plant Sci., 13, 1088211. https://doi.org/10.3389/fpls.2022.1088211

96. Lin, L.Y., Chow, H.X., Chen, C.H., Mitsuda, N., Chou, W.C. & Liu, T.Y. (2023). Role of autophagy-related proteins ATG8f and ATG8h in the maintenance of autophagic activity in Arabidopsis roots under phosphate starvation. Front Plant Sci., 14, 1018984. https://doi.org/10.3389/fpls.2023.1018984

97. Eguchi, M., Kimura, K., Makino, A. & Ishida, H. (2017). Autophagy is induced under Zn limitation and contributions to Zn-limited stress tolerance in Arabidopsis (Arabidopsis thaliana). Soil Sci. Plant Nutr., 63, pp. 342-350. https://doi.org/10.1080/00380768.2017.1360750

98. Shinozaki, D., Merkulova, E.A., Naya, L., Horie, T., Kanno, Y., Seo, M., Ohsumi, Y., Masclaux-Daubresse, C. & Yoshimoto, K. (2020). Autophagy increases zinc bioavailability to avoid light-mediated reactive oxygen species production under zinc deficiency. Plant Physiol., 182, pp. 1284-1296. https://doi.org/10.1104/pp.19.01522

99. Wang, J., Miao, S., Liu, Y. & Wang, Y. (2022). Linking autophagy to potential agronomic trait improvement in crops. Int. J. Mol. Sci., 23, 4793. https://doi.org/10.3390/ijms23094793

100. Xiong, Y., Contento, A.L., Nguyen, P.Q. & Bassham, D.C. (2007). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol., 143, pp. 291-299. https://doi.org/10.1104/pp.106.092106

101. Pѕrez-Pѕrez, M.E., Couso, I., Crespo, J.L. (2012). Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii. Autophagy, 8, pp. 376-388. https://doi.org/10.4161/auto.18864

102. Pѕrez-Pѕrez, M.E., Lemaire, S.D. & Crespo, J.L. (2012). Reactive oxygen species and autophagy in plants and algae. Plant Physiol., 160, pp. 156-164. https://doi.org/10.1104/pp.112.199992

103. Perez-Perez, M.E., Florencio, F.J. & Crespo, J.L. (2010). Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol., 152, pp. 1874-1888. https://doi.org/10.1104/pp.109.152520

104. Shin, J.-H., Yoshimoto, K., Ohsumi, Y., Jeon, J.-s. & An, G. (2009). OsATG10b, an autophagosome component, is required for cell survival against oxidative stress in rice. Mol. Cells, 27, pp. 67-74. https://doi.org/10.1007/s10059-009-0006-2

105. Minina, E.A., Moschou, P.N., Vetukuri, R.R., Sanchez-Vera, V., Cardoso, C., Liu, Q., Elander, P.H., Dalman, K., Beganovic, M., Lindberg Yilmaz, J., Marmon, S., Shabala, L., Suarez, M.F., Ljung, K., Nov«k, O., Shabala, S., Stymne, S., Hofius, D. & Bozhkov, P.V. (2018). Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. J. Exp. Bot., 69, 1415-1432. https://doi.org/10.1093/jxb/ery010

106. Wang, Y., Zheng, X., Yu, B., Han, S., Guo, J., Tang, H., Yu, A.Y., Deng, H., Hong, Y. & Liu, Y. (2015). Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy. Autophagy, 11, pp. 2259-2274. https://doi.org/10.1080/15548627.2015.1113365

107. Serrano, I., Romero-Puertas, M.C., Sandalio, L.M. & Olmedilla, A. (2015). The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot., 66, pp. 2869-2876. https://doi.org/10.1093/jxb/erv083

108. Sychuk, A., Radchenko, M. & Morderer, Y. (2013). The increase of phytotoxic action of graminicide fenoxaprop-P-ethyl by NO donor sodium nitroprusside. Sci. Educat. New Dimen.: Nat. Tech. Sci., 2, 21. https://seanewdim.com/uploads/3/4/5/1/34511564/ sychuk_a._radchenko_m._morderer_e._the_increase_of_phytotoxic_action_of_graminicide_fenoxaprop-p-ethyl_by_no_donor_sodium_nitrpruside.pdf

109. Ponomaryova, I.G., Khandezhina, M.V. & Radchenko, M.P. (2023). Increase in the phytotoxic action of the protoporphyrinogen oxidase inhibitor herbicide carfentrazone and the herbicide of the class of synthetic auxins 2,4-D when used together with the NO donor sodium nitroprusside. Plant Physiol. Genet., 54, 5, pp. 419-428 [in Ukrainian]. https://doi.org/10.15407/frg2022.05.419

110. Lockshin, R.A. & Zakeri, Z. (2004). Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol., 36, pp. 2405-2419. https://doi.org/10.1016/j.biocel.2004.04.011

111. Morderer, Y.Y., Radchenko, M.P. & Sychuk, A.M. (2013). Programmed cell death in the pathogenesis, induced by herbicides in plants. Fiziol. rast. genet., 45, No. 6, pp. 517-526 [in Ukrainian]. http://dspace.nbuv.gov.ua/handle/123456789/159373

112. Radchenko, M.P., Gurianov, D.S. & Morderer, Ye.Yu. (2022). DNA fragmentation and endonuclease activity under the effect of herbicides acetyl-CoA-carboxylase and acetolactate synthase inhibitors. Fiziol. rast. genet., 54, No. 5, pp. 404-418 [in Ukrainian]. https://doi.org/10.15407/frg2022.05.404

113. Morderer, Ye.Yu., Palanytsia, M.P. & Rodzevych, O.P. (2008). Research on the participation of free radical oxidation reactions in the development of the phytotoxic action of graminicides. Physiol. biochim. cult. rast., 40, No. 1, pp. 56-61 [in Ukrainian].

114. Palanytsia, M.P., Trach, V.V. & Morderer, Ye.Yu. (2009). Generation of active forms of oxygen under the action of graminicides and modifiers of their activity. Physiol. biochim. cult. rast., 41, pp. 328-334 [in Ukrainian].

115. Zhao, L., Jing, X., Chen, L., Liu, Y., Su, Y., Liu, T., Gao, C., Yi, B., Wen, J., Ma, C., Tu, J., Zou, J., Fu, T. & Shen, J. (2015). Tribenuron-methyl induces male sterility through anther-specific inhibition of acetolactate synthase leading to autophagic cell death. Mol. Plant, 8, pp. 1710-1724. https://doi.org/10.1016/j.molp.2015.08.009

116. Lokdarshi A. & von Arnim A.G. (2022). Review: emerging roles of the signaling network of the protein kinase GCN2 in the plant stress response. Plant Sci., 320, 111280. https://doi.org/10.1016/j.plantsci.2022.111280

117. Zhao, L., Deng, L., Zhang, Q., Jing, X., Ma, M., Yi, B., Wen, J., Ma, Ch., Tu, J., Fu, T. & Shen, J. (2018). Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 14(4), pp. 702-714. https://doi.org/10.1080/15548627.2017.1407888

118. Qi, H., Xia, F.N. & Xiao, S. (2021). Autophagy in plants: physiological roles and post-translational regulation. J. Int. Plant Biol., 63, pp. 161-179. https://doi.org/10.1111/jipb.12941

119. Champion, A., Kreis, M., Mockaitis, K., Picaud, A. & Henry, Y. (2004). Arabidopsis kinome: after the casting. Functional & Integrative Genomics, 4, pp. 163-187. https://doi.org/10.1007/s10142-003-0096-4

120. Durek, P., Schmidt, R., Heazlewood, J.L., Jones, A., MacLean, D., Nagel, A., Kersten, B. & Schulze, W.X. (2010). PhosPhAt: the arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res., 38, D828-D834. https://doi.org/10.1093/nar/gkp810

121. van Wijk, K.J., Friso, G., Walther, D. & Schulze, W.X. (2014). Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. The Plant Cell, 26, pp. 2367-2389. https://doi.org/10.1105/tpc.114.125815

122. Liao, C.-Y. & Bassham, D.C. (2019). Combating stress: the interplay between hormone signaling and autophagy in plants. J. Exp. Bot., 71, pp. 1723-1733. https://doi.org/10.1093/jxb/erz515

123. Hunter, T. (1995). When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell, 83, pp. 1-4. https://doi.org/10.1016/0092-8674(95)90225-2

124. Wu, Y., Shi, L., Li, L., Fu, L., Liu, Y., Xiong, Y. & Sheen, J. (2019). Integration of nutrient, energy, light, and hormone signaling via TOR in plants. J. Exp. Bot., 70, pp. 2227-2238. https://doi.org/10.1093/jxb/erz028

125. Margalha, L., Confraria, A. & Baena-Gonz«lez, E. (2019). SnRK1 and TOR: modulating growth-defense trade-offs in plant stress responses. J. Exp. Bot., 70, pp. 2261-2274. https://doi.org/10.1093/jxb/erz066

126. Retzer, K. & Weckwerth, W. (2023). Recent insights into metabolic and signaling events of directional root growth regulation and its implications for sustainable crop production systems. Front. Plant Sci., 14, 1154088. 10.3389/fpls.2023.1154088 https://doi.org/10.3389/fpls.2023.1154088

127. Baena-Gonzalez, E., Rolland, F., Thevelein, J.M. & Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signaling. Nature, 448, pp. 938-942. https://doi.org/10.1038/nature06069

128. Chen, L., Su, Z.Z., Huang, L., Xia, F.N., Qi, H., Xie, L.J., Xiao, S. & Chen, Q.F. (2017). The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis. Front. Plant Sci, 8, 1201. https://doi.org/10.3389/fpls.2017.01201

129. Soto-Burgos, J. & Bassham, D.C. (2017). SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PloS One, 12, e0182591. https://doi.org/10.1371/journal.pone.0182591

130. Pu, Y., Luo, X. & Bassham, D.C. (2017). TOR-dependent and -independent pathways regulate autophagy in arabidopsis thaliana. Front. Plant Sci., 8, 1204. https://doi.org/10.3389/fpls.2017.01204

131. Pu, Y.T., Soto-Burgos, J. & Bassham, D.C. (2017) Regulation of autophagy through SnRK1 and TOR signaling pathways. Plant Signal. Behav., 12, e1395128. https://doi.org/10.1080/15592324.2017.1395128

132. Nolan, T.M., Brennan, B., Yang, M., Chen, J., Zhang, M., Li, Z., Wang, X., Bassham, D.C. Walley, J., & Yin, Y. (2017). Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Develop. Cell, 41, No. 33-46, e7. https://doi.org/10.1016/j.devcel.2017.03.013

133. Montes, C., Wang, P., Liao. C.-Y., Nolan, T.M., Song, G., Clark, N.M., Elmore, J.M., Guo, H., Bassham, D.C., Yin, Y. & Walley, J.W. (2022). Integration of multi-omics data reveals interplay between brassinosteroid and target of rapamycin complex signaling in Arabidopsis. New Phytol., 236, pp. 893-910. https://doi.org/10.1111/nph.18404

134. Liao, C.-Y., Pu, Y., Nolan, T.M., Montes, C., Guo, H., Walley, J.W. & Yin, Y. (2023). Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in Arabidopsis. Autophagy, 19, pp. 1293-1310. https://doi.org/10.1080/15548627.2022.2124501

135. Zhang, B., Shao, L., Wang, J., Zhang, Y., Guo, X., Peng, Y., Cao, Y. & Lai, Z. (2021). Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens. Autophagy, 17, pp. 2093-2110. https://doi.org/10.1080/15548627.2020.1810426

136. Wang, P., Zhao, Y., Li, Z., Hsu, C.C., Liu, X., Fu, L., Hou, Y.J., Du, Y., Xie, S., Zhang, C., Gao, J., Cao, M., Huang, X., Zhu, Y., Tang, K., Wang, X., Tao, W.A., Xiong, Y. & Zhu, J.K. (2018). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol. Cell, 69, pp. 100-112, e6. https://doi.org/10.1016/j.molcel.2017.12.002

137. Rodriguez, M., Parola, R., Andreola, S., Pereyra, C. & MartHnez-Noel, G. (2019). TOR and SnRK1 signaling pathways in plant response to abiotic stresses: do they always act according to the «yin-yang» model? Plant Sci., 288, 110220. https://doi.org/10.1016/j.plantsci.2019.110220

138. Ahn, C.S., Ahn, H.-K. & Pai, H.-S. (2015). Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signaling pathway. J. Exp. Bot., 66, pp. 827-840. https://doi.org/10.1093/jxb/eru438

139. Aroca, A., Serna, A., Gotor, C. & Romero, L.C. (2015). S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol., 168, pp. 334-342. https://doi.org/10.1104/pp.15.00009

140. Aroca, A., Benito, J.M., Gotor, C. & Romero, L.C. (2017). Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in various biological processes in Arabidopsis. J. Exp. Bot., 68, pp. 4915-4927. https://doi.org/10.1093/jxb/erx294

141. Jurado-Flores, A., Romero, L.C. & Gotor, C. (2021). Label-free quantitative proteomic analysis of nitrogen starvation in arabidopsis root reveals new aspects of H2S signaling by protein persulfidation. Antioxidants (Basel), 10, 508. https://doi.org/10.3390/antiox10040508

142. Gotor, C., GarcHa, I., Crespo, J.L. & Romero, L.C. (2013). Sulfide as a signaling molecule in autophagy. Autophagy, 9, pp. 609-611. https://doi.org/10.4161/auto.23460

143. Gotor, C., Aroca, A. & Romero, L.C. (2022). Persulfidation is the mechanism underlying sulfide-signaling of autophagy. Autophagy, 18, pp. 695-697. https://doi.org/10.1080/15548627.2021.1936357

144. Aroca, A., Yruela, I., Gotor, C. & Bassham D.C. (2021). Persulfidation of ATG18a regulates autophagy under ER stress in Arabidopsis. Proc. Natl. Acad. Sci. USA, 118, e2023604118. https://doi.org/10.1073/pnas.2023604118

145. Ђlvarez, C., GarcHa, I., Moreno, I., Pѕrez-Pѕrez, M.E., Crespo, J.L., Romero, L.C. & Gotor, C. (2012). Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in Arabidopsis. Plant Cell, 24, pp. 4621-4634. https://doi.org/10.1105/tpc.112.105403

146. Laureano-MarHn, A.M., Moreno, I., Romero, L.C. & Gotor, C. (2016). Negative regulation of autophagy by sulfide is independent of reactive oxygen species. Plant Physiol., 171, pp. 1378-91. https://doi.org/10.1104/pp.16.00110

147. Jurado-Flores, A., Aroca, A., Romero, L.C. & Gotor, C. (2023). Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis. J. Exp. Bot., 74, pp. 4654-4669. https://doi.org/10.1093/jxb/erad165

148. Xuan, L., Wu, H., Li, J., Yuan, G., Huang, Y., Lian, C., Wang, X., Yang, T. & Wang, C. (2022). Hydrogen sulfide reduces cell death through regulating autophagy during submergence in Arabidopsis. Plant Cell Rep., 41, 1531-1548. https://doi.org/10.1007/s00299-022-02872-z

149. Shangguan, L., Fang, X., Chen, L., Cui, L. & Fang, J. (2018). Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress. Planta, 247, pp. 1449-1463. https://doi.org/10.1007/s00425-018-2864-3

150. Chen, X., Li, C., Wang, H. & Guo, Z. (2019). WRKY transcription factors: evolution, binding, and action. Phytopathol. Res., 1, 13. https://doi.org/10.1186/s42483-019-0022-x

151. Song, I., Hong, S. & Huh, S.U. (2022). Identification and expression analysis of the Solanum tuberosum StATG8 family associated with the WRKY transcription factor. Plants (Basel), 11, 2858. https://doi.org/10.3390/plants11212858

152. Wang, Y., Cao, J.-J., Wang, K.-X., Xia, X.-J., Shi, K., Zhou, Y.-H., Yu, J.-Q. & Zhou, J. (2019). BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation in tomatoes. Plant Physiol., 179, pp. 671-685. https://doi.org/10.1104/pp.18.01028

153. Chi, C., Li, X., Fang, P., Xia, X., Shi, K., Zhou, Y., Zhou, J. & Yu, J. (2020). Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato. J. Exp. Bot., 71, pp. 1092-1106. https://doi.org/10.1093/jxb/erz466