The data on the process of plant autophagy, its importance for the functioning of plants under optimal and stressful conditions are reviewed. Autophagy, a highly intricate and conserved process, remains at a basal level under optimal conditions, and is induced when plants fall under stress. This process stands as one of the central mechanisms enabling plants to adapt to adverse environmental factors. The activation of autophagy in response to various abiotic stressors, encompassing extreme temperatures, salinity, drought, nutrient deprivation, and herbicides is discussed. The regulatory mechanisms of autophagy are thoroughly considered, encompassing post-translational protein modifications crucial for its activation and progression, transcriptional regulation, and signaling through phytohormones. The pivotal role of autophagy activation is underscored in eliminating damaged organelles, and providing vital nutrients required for plant functionality and survival when exposed to abiotic stressors. Furthermore, the potential involvement of autophagy in herbicide-induced pathogenesis is discussed, with a dual perspective: its potential role in regulating programmed cell death (PCD), and its role in mitigating herbicide effects through the plant’s homeostatic resistance mechanisms.
Keywords: autophagy, abiotic factors, herbicides
Full text and supplemented materials
Free full text: PDFReferences
1. Signorelli, S., Tarkowski, L.P., Van den Ende, W. & Bassham, D.C. (2019). Linking autophagy to abiotic and biotic stress responses. Trends in Plant Sci., 24, pp. 413-430. https://doi.org/10.1016/j.tplants.2019.02.001
2. Marshall, R.S. & Vierstra, R.D. (2018). Autophagy: the master of bulk and selective recycling. Annu. Rev. Plant Biol., 29, No. 69, pp. 173-208. https://doi.org/10.1146/annurev-arplant-042817-040606
3. Ohsumi, Y. (2014). Historical landmarks of autophagy research. Cell Res., 24, pp. 9-23. https://doi.org/10.1038/cr.2013.169
4. Matsuura, A., Tsukada, M., Wada, Y. & Ohsumi, Y. (1997). Apgip, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192, pp. 245-250. https://doi.org/10.1016/S0378-1119(97)00084-X
5. Yoshimoto, K. & Ohsumi, Y. (2018). Unveiling the molecular mechanisms of plant autophagy - from autophagosomes to vacuoles in plants. Plant Cell Physiol., 59, No. 7, pp. 1337-1344. https://doi.org/10.1093/pcp/pcy112
6. Liu, Y. & Bassham, D.C. (2012). Autophagy: pathways for self-eating in plant cells. Annu Rev. Plant Biol., 63, pp. 215-237. https://doi.org/10.1146/annurev-arplant-042811-105441
7. Chen, H., Dong, J. & Wang, T. (2021). Autophagy in plant abiotic stress management. Int. J. Mol. Sci., 22, 4075. https://doi.org/10.3390/ijms22084075
8. Chung, T. (2019). How phosphoinositides shape autophagy in plant cells. Plant Sci., 281, pp. 146-158. https://doi.org/10.1016/j.plantsci.2019.01.017
9. Fang, Y., Wang, S., Wu, H., Li, C., Zhao, H., Chen, H., Wang, X. & Wu, Q. (2022). Genome-wide identification of ATG gene family members in fagopyrum tataricum and their expression during stress responses. Int. J. Mol. Sci., 23, 14845. https://doi.org/10.3390/ijms232314845
10. Xia, K., Liu, T., Ouyang, J., Wang, R., Fan, T. & Zhang, M. (2011). Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res., 18, pp. 363-377. https://doi.org/10.1093/dnares/dsr024
11. Huang, W., Ma, D.N., Liu, H.L., Luo, J., Wang, P., Wang, M.L., Guo, F., Wang, Y., Zhao, H. & Ni, D.J. (2020). Genome-wide identification of CsATGs in tea plant and the involvement of CsATG8e in nitrogen utilization. Int. J. Mol. Sci., 21, 7043. https://doi.org/10.3390/ijms21197043
12. Yang, X., & Bassham, D.C. (2015). New insight into the mechanism and function of autophagy in plant cells. Int. Rev. Cell Mol. Biol., 320, pp. 1-40. https://doi.org/10.1016/bs.ircmb.2015.07.005
13. Vierstra, R.D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci., 8, No. 3, pp. 135-142. https://doi.org/10.1016/S1360-1385(03)00014-1
14. Svenning, S. & Johansen, T. (2013). Selective autophagy. Essays Biochem., 55, pp. 79-92. https://doi.org/10.1042/bse0550079
15. Hafren, A., Macia, J.L., Love, A.J., Milner, J.J., Drucker, M. & Hofius, D. (2017). Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc. Natl. Acad. Sci. USA, 114, E2026-E2035. https://doi.org/10.1073/pnas.1610687114
16. van Doorn, W.G. & Papini, A. (2013). The ultra-structure of autophagy in plant cells: a review. Autophagy, 9, pp. 1922-1936. https://doi.org/10.4161/auto.26275
17. Bu, F., Yang, M., Guo, X., Huang, W. & Chen, L. (2020). Multiple functions of ATG8 family proteins in plant autophagy. Front. Cell Dev. Biol., 8, 466. https://doi.org/10.3389/fcell.2020.00466
18. Soto-Burgos, J., Zhuang, X., Jiang, L. & Bassham, D.C. (2018). Dynamics of autophagosome formation. Plant Physiol., 176, pp. 219-229. https://doi.org/10.1104/pp.17.01236
19. Su, T., Li, X., Yang, M., Shao, Q., Zhao, Y., Ma, C. & Wang, P. (2020). Autophagy: an intracellular degradation pathway regulating plant survival and stress response. Front. Plant Sci., 11, 164. https://doi.org/10.3389/fpls.2020.00164
20. Agbemafle, W., Wong, M.M. & Bassham, D.C. (2023). Transcriptional and post-translational regulation of plant autophagy. J. Exp. Bot., 26. https://doi.org/10.1093/jxb/
21. Suttangkakul, A., Li, F., Chung, T. & Vierstra, R.D. (2011). The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. The Plant Cell, 23, pp. 3761-3779. https://doi.org/10.1105/tpc.111.090993
22. Li, F., Chung, T. & Vierstra, R.D. (2014). AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. Plant Cell, 26, pp. 788-807. https://doi.org/10.1105/tpc.113.120014
23. Liu, F., Hu, W., Li, F., Marshall, R.S., Zarza, X., Munnik, T. & Vierstra, R.D. (2020). AUTOPHAGY-RELATED14 and its associated hosphatidylinositol 3-kinase complex promotes autophagy in Arabidopsis. Plant Cell, 32, pp. 3939-3960. https://doi.org/10.1105/tpc.20.00285
24. Bhati, K.K., Luong, A.M. & Batoko, H. (2021). VPS34 complexes in plants: untangled enough? Trends in Plant Sci., 26, pp. 303-305. https://doi.org/10.1016/j.tplants.2021.02.001
25. Zhuang, X., Chung, K.P., Cui, Y., Lin, W., Gao, C., Kang, B.-H. & Jiang, L. (2017). ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proceedings of the National Academy of Sci., USA, 114, E426-E435. https://doi.org/10.1073/pnas.1616299114
26. Kang, S., Shin, K.D., Kim, J.H. & Chung, T. (2018). Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in Arabidopsis. Plant Cell Rep., 37, pp. 653-664. https://doi.org/10.1007/s00299-018-2258-9
27. Feng, Y., He, D., Yao, Z. & Klionsky, D.J. (2013). The machinery of macroautophagy. Cell Res., 24, pp. 24-41. https://doi.org/10.1038/cr.2013.168
28. Slavikova, S., Shy, G., Yao, Y., Glozman, R., Levanony, H., Pietrokovski, S., Elazar, Z. & Galili, G. (2005). The autophagy-associated Atg8 gene family operates both under favorable growth conditions and under starvation stress in Arabidopsis plants. J. Exp. Bot., 56, pp. 2839-2849. https://doi.org/10.1093/jxb/eri276
29. Chung, T., Suttangkakul, A. & Vierstra, R.D. (2009). The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol., 149, pp. 220-234. https://doi.org/10.1104/pp.108.126714
30. Kellner, R., De la Concepcion, J.C., Maqbool, A., Kamoun, S. & Dagdas, Y.F. (2017). ATG8 Expansion: a driver of selective autophagy diversification? Trends in Plant Sci., 22(3), pp. 204-214. https://doi.org/10.1016/j.tplants.2016.11.015
31. Johansen, T. & Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7, pp. 279-296. https://doi.org/10.4161/auto.7.3.14487
32. Thompson, A.R. & Vierstra, R.D. (2005). Autophagic recycling: lessons from yeast help define the process in plants. Curr. Opin. Plant Biol., 8, pp. 165-173. https://doi.org/10.1016/j.pbi.2005.01.013
33. Izumi, M., Ishida, H., Nakamura, S. & Hidema, J. (2017). Entire photodamaged chloroplasts are transported to the central vacuole by autophagy. The Plant Cell, 29, pp. 377-394. https://doi.org/10.1105/tpc.16.00637
34. Nakamura, S., Hagihara, S., Otomo, K., Ishida, H., Hidema, J., Nemoto, T. & Izumi, M. (2021). Autophagy contributes to the quality control of leaf mitochondria. Plant & Cell Physiol., 62, pp. 229-247. https://doi.org/10.1093/pcp/pcaa162
35. Liu, Y., Burgos, J.S., Deng, Y., Srivastava, R., Howell, S.H. & Bassham, D.C. (2012). Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. The Plant Cell., 24, pp. 4635-4651. https://doi.org/10.1105/tpc.112.101535
36. Howell, S.H. (2013). Endoplasmic reticulum stress responses in plants. Annu. Rev. Plant Biol., 64, pp. 477-499. https://doi.org/10.1146/annurev-arplant-050312-120053
37. Chen, Y. & Yu, X. (2023). Endoplasmic reticulum stress-responsive microRNAs are involved in the regulation of abiotic stresses in wheat. Plant Cell Rep., 42, pp. 1433-1452. https://doi.org/10.1007/s00299-023-03040-7
38. Wang, J., Zhang, Q., Bao, Y. & Bassham, D.C. (2023). Autophagic degradation of membrane-bound organelles in plants. Biosci. Rep., 43, BSR20221204. https://doi.org/10.1042/BSR20221204
39. Kim, J., Lee, H., Lee, H.N., Kim, S.H., Shin, K.D. & Chung, T. (2013). Autophagy-related proteins are required for degradation of peroxisomes in Arabidopsis hypocotyls during seedling growth. Plant Cell, 25, pp. 4956-4966. https://doi.org/10.1105/tpc.113.117960
40. Lee, H.N., Kim, J. & Chung, T. (2014). Degradation of plant peroxisomes by autophagy. Front Plant Sci., 8, No. 5, 139. https://doi.org/10.3389/fpls.2014.00139
41. Young, P.G. & Bartel, B. (2016). Pexophagy and peroxisomal protein turnover in plants. Biochim. Bio. Acta, 1863, 5, pp. 999-1005. https://doi.org/10.1016/j.bbamcr.2015.09.005
42. Floyd, B.E., Morriss, S.C., MacIntosh, G.C. & Bassham, D.C. (2015). Evidence for autophagy-dependent pathways of rRNA turnover in Arabidopsis. Autophagy, 11, pp. 2199-2212. https://doi.org/10.1080/15548627.2015.1106664
43. Bassham, D.C. & MacIntosh, G.C. (2017). Degradation of cytosolic ribosomes by autophagy-related pathways. Plant Sci., 262, pp. 169-174. https://doi.org/10.1016/j.plantsci.2017.05.008
44. Kazibwe, Z., Lium, A.Y., MacIntosh, G.C. & Bassham, D.C. (2019). The ins and outs of autophagic ribosome turnover. Cells, 8, No. 12, 1603. https://doi.org/10.3390/cells8121603
45. Marshall, R.S., Li, F., Gemperline, D.C., Book, A.J. & Vierstra, R.D. (2015). Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell, 58, pp. 1053-1066. https://doi.org/10.1016/j.molcel.2015.04.023
46. Xiong, Q., Feng, R., Fischer, S., Karow, M., Xiong, M., Mebling, S., Nitz, L., Mтller, S., Clemen, C.S., Song, N., Li, P., Wu, C. & Eichinger, L. (2023). Proteasomes of autophagy-deficient cells exhibit alterations in regulatory proteins and a marked reduction in activity. Cells, 12, No. 11, 1514. https://doi.org/10.3390/cells12111514
47. Zhou, J., Wang, J., Cheng, Y., Chi, Y.J., Fan, B., Yu, J.Q. & Chen, Z. (2013). NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet., 9, e1003196. https://doi.org/10.1371/journal.pgen.1003196
48. Zhou, J., Wang, J., Yu, J.Q. & Chen, Z. (2014). Role and regulation of autophagy in heat stress responses of tomato plants. Front. Plant Sci., 5, 174. https://doi.org/10.3389/fpls.2014.00174
49. Zhang, Y. & Chen, Z. (2020). Broad and complex roles of NBR1-mediated selective autophagy in plant stress responses. Cells, 9, No. 12, 2562. https://doi.org/10.3390/cells9122562
50. Wada, S., Hayashida, Y., Izumi, M., Kurusu, T., Hanamata, S., Kanno, K., Kojima, S., Yamaya, T., Kuchitsu, K., Makino, A. & Ishida, H. (2015). Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiol., 168, 1, pp. 60-73. https://doi.org/10.1104/pp.15.00242
51. Guiboileau, A., Avila-Ospina, L., Yoshimoto, K., Soulay, F., Azzopardi, M., Marmagne, A., Lothier, J. & Masclaux-Daubresse, C. (2013). Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. New Phytol., 199, pp. 683-694. https://doi.org/10.1111/nph.12307
52. Cao, J., Zheng, X., Xie, D., Zhou, H., Shao, S. & Zhou, J. (2022). Autophagic pathway contributes to low-nitrogen tolerance by optimizing nitrogen uptake and utilization in tomato. Hortic. Res., 9, uhac068. https://doi.org/10.1093/hr/uhac068
53. Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B. & Dinesh- Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell, 121, pp. 567-577. https://doi.org/10.1016/j.cell.2005.03.007
54. Kwon, S.I., Cho, H.J., Kim, S.R. & Park, O.K. (2013). The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol., 161, pp. 1722-1736. https://doi.org/10.1104/pp.112.208108
55. Leary, A.Y., Sanguankiattichai, N., Duggan, C., Tumtas, Y., Pandey, P., Segretin, M.E., Salguero Linares, J., Savage, Z.D., Yow, R.J. & Bozkurt, T.O. (2018). Modulation of plant autophagy during pathogen attack. J. Exp. Bot., 69, pp. 1325-1333. https://doi.org/10.1093/jxb/erx425
56. Jeon, H.S., Jang, E., Kim, J., Kim, S.H., Lee, M.H., Nam, M.H., Tobimatsu, Y. & Park, O.K. (2023). Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity. Autophagy, 19, pp. 597-615. https://doi.org/10.1080/15548627.2022.2085496
57. Farrѕ, J.C. & Subramani, S. (2016). Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat. Rev. Mol. Cell Biol., 17, pp. 537-552. https://doi.org/10.1038/nrm.2016.74
58. Maqbool, A., Hughes, R.K., Dagdas, Y.F., Tregidgo, N., Zess, E., Belhaj, K., Round, A., Bozkurt, T.O., Kamoun, S. & Banfield, M.J. (2016). Structural basis of host autophagy-related protein 8 (ATG8) binding by the irish potato famine pathogen effector protein PexRD54. J. Biol. Chem., 291, 20270-20282. https://doi.org/10.1074/jbc.M116.744995
59. Wang, P., Mugume, Y. & Bassham, D.C. (2018). New advances in autophagy in plants: regulation, selectivity and function. Seminars in Cell & Develop. Biol., 80, pp. 113-122. https://doi.org/10.1016/j.semcdb.2017.07.018
60. Yang, X., Srivastava, R., Howell, S.H. & Bassham, D.C. (2016). Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. Plant J., 85, pp. 83-95. https://doi.org/10.1111/tpj.13091
61. Zhai, Y., Guo, M., Wang, H., Lu, J., Liu, J., Zhang, C., Gong, Z. & Lu, M. (2016). Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L. Front Plant Sci., 7, 131. https://doi.org/10.3389/fpls.2016.00131
62. Sedaghatmehr, M., Thirumalaikumar, V.P., Kamranfar, I., Marmagne, A., Masclaux-Daubresse, C. & Balazadeh, S. (2019). A regulatory role of autophagy for resetting the memory of heat stress in plants. Plant Cell Environ., 42, pp. 1054-1064. https://doi.org/10.1111/pce.13426
63. Zhou, J., Ma, J., Yang, C., Zhu, X., Li, J., Zheng, X., Li, X., Chen, S., Feng, L., Wang, P., Ho, M.I., Ma, W., Liao, J., Li, F., Wang, C., Zhuang, X., Jiang, L., Kang, B.H. & Gao C. (2023). A non-canonical role of ATG8 in golgi recovery from heat stress in plants. Nat. Plants, 9, pp. 749-765. https://doi.org/10.1038/s41477-023-01398-w
64. Zhao, W., Song, J., Wang, M., Chen, X., Du, B., An, Y., Zhang, L., Wang, D. & Guo, C. (2023). Alfalfa MsATG13 confers cold stress tolerance to plants by promoting autophagy. Int. J. Mol. Sci., 24, 12033. https://doi.org/10.3390/ijms241512033
65. Rana, R.M., Dong, S., Ali, Z., Huang, J. & Zhang, H.S. (2012). Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Genet. Mol. Res., 11, 3676-3687. https://doi.org/10.4238/2012.August.17.3
66. Tang, J. & Bassham, D.C. (2021). Autophagy during drought: function, regulation, and potential application. Plant J., 109(2), 390-401. https://doi.org/10.1111/tpj.15481
67. Liu, Y., Xiong, Y. & Bassham, D.C. (2009). Autophagy is required for tolerance of drought and salt stress in plants. Autophagy, 5, pp. 954-963. https://doi.org/10.4161/auto.5.7.9290
68. Zhu, T., Zou, L., Li, Y., Yao, X., Xu, F., Deng, X., Zhang, D. & Lin, H. (2018). Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. Plant Bio. J., 16, pp. 2063-2076. https://doi.org/10.1111/pbi.12939
69. Li, Y.B., Cui, D.Z., Sui, X.X., Huang, C., Huang, C.Y. & Fan, Q.Q. (2019). Autophagic survival precedes programmed cell death in wheat seedlings exposed to drought stress. Int. J. Mol. Sci., 20, 5777. https://doi.org/10.3390/ijms20225777
70. Sun, X., Wang, P., Jia, X., Huo, L., Che, R. & Ma, F. (2017). Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Bio. J., 16(2), pp. 545-557. https://doi.org/10.1111/pbi.12794
71. Jia, X., Gong, X., Jia, X., Li, X., Wang, Y., Wang, P., Huo, L., Sun, X., Che, R., Li, T., Zou, Y. & Ma, F. (2021). Overexpression of MdATG8i enhances drought tolerance by alleviating oxidative damage and promoting water uptake in transgenic apple. Int. J. Mol. Sci., 22, 5517. https://doi.org/10.3390/ijms22115517
72. Jia, X., Mao, K., Wang, P., Wang, Y., Jia, X., Huo, L., Sun, X., Che, R., Gong, X. & Ma, F. (2021). Overexpression of MdATG8i improves water use efficiency in transgenic apple by modulating photosynthesis, osmotic balance, and autophagic activity under moderate water deficit. Hortic. Res., 8, 81. https://doi.org/10.1038/s41438-021-00521-2
73. Wang, Y., Cai, S., Yin, L., Shi, K., Xia, X., Zhou, Y., Yu, J. & Zhou, J. (2015). Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy. Autophagy, 11, 2033-2047. https://doi.org/10.1080/15548627.2015.1098798
74. Wang, X., Gao, Y., Wang, Q., Chen, M., Ye, X., Li, D., Chen X., Li, L. & Gao, D. (2019). 24-Epibrassinolide-alleviated drought stress damage influences antioxidant enzymes and autophagy changes in peach (Prunus persicae L.) leaves. Plant Physiol. Bio., 135, pp. 30-40. https://doi.org/10.1016/j.plaphy.2018.11.026
75. Yang, M., Wang, L., Chen, C., Guo, X., Lin, C., Huang, W. & Chen, L. (2021). Genome-wide analysis of autophagy-related genes in Medicago truncatula highlights their roles in seed development and response to drought stress. Sci. Rep., 11, 22933. https://doi.org/10.1038/s41598-021-02239-6
76. Hachez, C., Veljanovski, V., Reinhardt, H., Guillaumot, D., Vanhee, C., Chaumont, F. & Batoko, H. (2014). The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation. Plant Cell, 26, pp. 4974-4990. https://doi.org/10.1105/tpc.114.134080
77. Li, X., Liu, Q., Feng, H., Deng, J., Zhang, R., Wen, J., Dong, J. & Wang, T. (2020). Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy, 16, pp. 862-877. https://doi.org/10.1080/15548627.2019.1643656
78. Bao, Y. (2020). Links between drought stress and autophagy in plants. Plant Signaling & Behavior, 15, 1779487. https://doi.org/10.1080/15592324.2020.1779487
79. Bao, Y., Song, W.-M., Wang, P., Yu, X., Li, B., Jiang, C., Shiu, S. H., Zhang, H. & Bassham, D.C. (2020). COST1 regulates autophagy to control plant drought tolerance. Proc. Natl Acad. Sci., 117, pp. 7482-7493. https://doi.org/10.1073/pnas.1918539117
80. Huo, L., Guo, Z., Jia, X., Sun, X., Wang, P., Gong, X. & Ma, F. (2020). Increased autophagic activity in roots caused by overexpression of the autophagy-related gene MdATG10 in apple enhances salt tolerance. Plant Sci., 294, 110444. https://doi.org/10.1016/j.plantsci.2020.110444
81. Huo, L., Guo, Z., Wang, P., Zhang, Z., Jia, X., Sun, Y., Sun, X., Gong, X. & Ma, F. (2020). MdATG8i functions positively in apple salt tolerance by maintaining photosynthetic ability and increasing the accumulation of arginine and polyamines. Env. Exp. Bot., 172, 103989. https://doi.org/10.1016/j.envexpbot.2020.103989
82. Luo, L., Zhang, P., Zhu, R. Fu, J., Su, J., Zheng, J., Wang, Z., Wang, D. & Gong, Q. (2017). Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis. Front Plant Sci., 8, 1459. https://doi.org/10.3389/fpls.2017.01459
83. Moriyasu, Y. & Ohsumi, Y. (1996). Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol., 111, pp. 1233-1241. https://doi.org/10.1104/pp.111.4.1233
84. Tasaki, M., Asatsuma, S. & Matsuoka, K. (2014). Monitoring protein turnover during phosphate starvation-dependent autophagic degradation using a photoconvertible fluorescent protein aggregate in tobacco BY-2 cells. Front. Plant Sci., 5. https://doi.org/10.3389/fpls.2014.00172
85. Toyooka, K., Takeuchi, M., Moriyasu, Y., Fukuda, H. & Matsuoka, K. (2006). Protein aggregates are transported to vacuoles by macroautophagic mechanism in nutrient-starved plant cells. Autophagy, 2, pp. 91-106. https://doi.org/10.4161/auto.2.2.2366
86. Takatsuka, Ch., Inoue, Yu., Higuchi, T., Hillmer, S., Robinson, D.G. & Moriyasu, Yu. (2011). Autophagy in tobacco BY-2 cells cultured under sucrose starvation conditions: isolation of the autolysosome and its characterization. Plant Cell Physiol., 52(12), pp. 2074-2087. https://doi.org/10.1093/pcp/pcr137
87. Guiboileau, A., Yoshimoto, K., Soulay, F., Bataille, M.P., Avice, J.C. & Masclaux-Daubresse, C. (2012). Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol., 194, pp. 732-740. https://doi.org/10.1111/j.1469-8137.2012.04084.x
88. Wang, P., Nolan, T.M., Yin, Y. & Bassham, D.C. (2020). Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. Autophagy, 16, pp. 123-139. https://doi.org/10.1080/15548627.2019.1598753
89. Lornac, A., Haveѕ, M., Chardon, F., Soulay, F., Clѕment, G., Avice, J.-Ch. & Masclaux-Daubresse, C. (2020). Autophagy controls sulphur metabolism in the rosetta leaves of arabidopsis and facilitates S remobilization that the seeds. Cells, 9, 332. https://doi.org/10.3390/cells9020332
90. Pottier, M., Dumont, J., Masclaux-Daubresse, C. & Thomine, S. (2019). Autophagy is essential for optimal translocation of iron to seeds in Arabidopsis. J. Exp. Bot., 70, pp. 859-869. https://doi.org/10.1093/jxb/ery388
91. Li, F., Chung, T., Pennington, J.G., Federico, M.L., Kaeppler, H.F., Kaeppler, S.M., Otegui, M.S. & Vierstra, R.D. (2015). Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell, 27, pp. 1389-1408. https://doi.org/10.1105/tpc.15.00158
92. Naumann, C., Mтller, J., Sakhonwasee, S., Wieghaus, A. Hause, G., Heisters, M., Bтrstenbinder, K. & Abel, S. (2019). The local phosphate deficiency response activates endoplasmic reticulum stress-dependent autophagy. Plant Physiol., 179, pp. 460-476. https://doi.org/10.1104/pp.18.01379
93. Yoshitake, Y., Nakamura, S., Shinozaki, D., Izumi, M., Yoshimoto, K., Ohta, H. & Shimojima, M. (2021). RCB-mediated chlorophagy caused by oversupply of nitrogen suppresses phosphate-starvation stress in plants. Plant Physiol., 185, pp. 318-330. https://doi.org/10.1093/plphys/kiaa030
94. Yoshitake, Y., Shinozaki, D. & Yoshimoto, K. (2022). Autophagy triggered by iron-mediated ER stress is an important stress response to the early phase of Pi starvation in plants. Plant J., 110, pp. 1370-1381. https://doi.org/10.1111/tpj.15743
95. Yoshitake, Y. & Yoshimoto, K. (2023). Intracellular phosphate recycling systems for survival during phosphate starvation in plants. Front Plant Sci., 13, 1088211. https://doi.org/10.3389/fpls.2022.1088211
96. Lin, L.Y., Chow, H.X., Chen, C.H., Mitsuda, N., Chou, W.C. & Liu, T.Y. (2023). Role of autophagy-related proteins ATG8f and ATG8h in the maintenance of autophagic activity in Arabidopsis roots under phosphate starvation. Front Plant Sci., 14, 1018984. https://doi.org/10.3389/fpls.2023.1018984
97. Eguchi, M., Kimura, K., Makino, A. & Ishida, H. (2017). Autophagy is induced under Zn limitation and contributions to Zn-limited stress tolerance in Arabidopsis (Arabidopsis thaliana). Soil Sci. Plant Nutr., 63, pp. 342-350. https://doi.org/10.1080/00380768.2017.1360750
98. Shinozaki, D., Merkulova, E.A., Naya, L., Horie, T., Kanno, Y., Seo, M., Ohsumi, Y., Masclaux-Daubresse, C. & Yoshimoto, K. (2020). Autophagy increases zinc bioavailability to avoid light-mediated reactive oxygen species production under zinc deficiency. Plant Physiol., 182, pp. 1284-1296. https://doi.org/10.1104/pp.19.01522
99. Wang, J., Miao, S., Liu, Y. & Wang, Y. (2022). Linking autophagy to potential agronomic trait improvement in crops. Int. J. Mol. Sci., 23, 4793. https://doi.org/10.3390/ijms23094793
100. Xiong, Y., Contento, A.L., Nguyen, P.Q. & Bassham, D.C. (2007). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol., 143, pp. 291-299. https://doi.org/10.1104/pp.106.092106
101. Pѕrez-Pѕrez, M.E., Couso, I., Crespo, J.L. (2012). Carotenoid deficiency triggers autophagy in the model green alga Chlamydomonas reinhardtii. Autophagy, 8, pp. 376-388. https://doi.org/10.4161/auto.18864
102. Pѕrez-Pѕrez, M.E., Lemaire, S.D. & Crespo, J.L. (2012). Reactive oxygen species and autophagy in plants and algae. Plant Physiol., 160, pp. 156-164. https://doi.org/10.1104/pp.112.199992
103. Perez-Perez, M.E., Florencio, F.J. & Crespo, J.L. (2010). Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol., 152, pp. 1874-1888. https://doi.org/10.1104/pp.109.152520
104. Shin, J.-H., Yoshimoto, K., Ohsumi, Y., Jeon, J.-s. & An, G. (2009). OsATG10b, an autophagosome component, is required for cell survival against oxidative stress in rice. Mol. Cells, 27, pp. 67-74. https://doi.org/10.1007/s10059-009-0006-2
105. Minina, E.A., Moschou, P.N., Vetukuri, R.R., Sanchez-Vera, V., Cardoso, C., Liu, Q., Elander, P.H., Dalman, K., Beganovic, M., Lindberg Yilmaz, J., Marmon, S., Shabala, L., Suarez, M.F., Ljung, K., Nov«k, O., Shabala, S., Stymne, S., Hofius, D. & Bozhkov, P.V. (2018). Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. J. Exp. Bot., 69, 1415-1432. https://doi.org/10.1093/jxb/ery010
106. Wang, Y., Zheng, X., Yu, B., Han, S., Guo, J., Tang, H., Yu, A.Y., Deng, H., Hong, Y. & Liu, Y. (2015). Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy. Autophagy, 11, pp. 2259-2274. https://doi.org/10.1080/15548627.2015.1113365
107. Serrano, I., Romero-Puertas, M.C., Sandalio, L.M. & Olmedilla, A. (2015). The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J. Exp. Bot., 66, pp. 2869-2876. https://doi.org/10.1093/jxb/erv083
108. Sychuk, A., Radchenko, M. & Morderer, Y. (2013). The increase of phytotoxic action of graminicide fenoxaprop-P-ethyl by NO donor sodium nitroprusside. Sci. Educat. New Dimen.: Nat. Tech. Sci., 2, 21. https://seanewdim.com/uploads/3/4/5/1/34511564/ sychuk_a._radchenko_m._morderer_e._the_increase_of_phytotoxic_action_of_graminicide_fenoxaprop-p-ethyl_by_no_donor_sodium_nitrpruside.pdf
109. Ponomaryova, I.G., Khandezhina, M.V. & Radchenko, M.P. (2023). Increase in the phytotoxic action of the protoporphyrinogen oxidase inhibitor herbicide carfentrazone and the herbicide of the class of synthetic auxins 2,4-D when used together with the NO donor sodium nitroprusside. Plant Physiol. Genet., 54, 5, pp. 419-428 [in Ukrainian]. https://doi.org/10.15407/frg2022.05.419
110. Lockshin, R.A. & Zakeri, Z. (2004). Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol., 36, pp. 2405-2419. https://doi.org/10.1016/j.biocel.2004.04.011
111. Morderer, Y.Y., Radchenko, M.P. & Sychuk, A.M. (2013). Programmed cell death in the pathogenesis, induced by herbicides in plants. Fiziol. rast. genet., 45, No. 6, pp. 517-526 [in Ukrainian]. http://dspace.nbuv.gov.ua/handle/123456789/159373
112. Radchenko, M.P., Gurianov, D.S. & Morderer, Ye.Yu. (2022). DNA fragmentation and endonuclease activity under the effect of herbicides acetyl-CoA-carboxylase and acetolactate synthase inhibitors. Fiziol. rast. genet., 54, No. 5, pp. 404-418 [in Ukrainian]. https://doi.org/10.15407/frg2022.05.404
113. Morderer, Ye.Yu., Palanytsia, M.P. & Rodzevych, O.P. (2008). Research on the participation of free radical oxidation reactions in the development of the phytotoxic action of graminicides. Physiol. biochim. cult. rast., 40, No. 1, pp. 56-61 [in Ukrainian].
114. Palanytsia, M.P., Trach, V.V. & Morderer, Ye.Yu. (2009). Generation of active forms of oxygen under the action of graminicides and modifiers of their activity. Physiol. biochim. cult. rast., 41, pp. 328-334 [in Ukrainian].
115. Zhao, L., Jing, X., Chen, L., Liu, Y., Su, Y., Liu, T., Gao, C., Yi, B., Wen, J., Ma, C., Tu, J., Zou, J., Fu, T. & Shen, J. (2015). Tribenuron-methyl induces male sterility through anther-specific inhibition of acetolactate synthase leading to autophagic cell death. Mol. Plant, 8, pp. 1710-1724. https://doi.org/10.1016/j.molp.2015.08.009
116. Lokdarshi A. & von Arnim A.G. (2022). Review: emerging roles of the signaling network of the protein kinase GCN2 in the plant stress response. Plant Sci., 320, 111280. https://doi.org/10.1016/j.plantsci.2022.111280
117. Zhao, L., Deng, L., Zhang, Q., Jing, X., Ma, M., Yi, B., Wen, J., Ma, Ch., Tu, J., Fu, T. & Shen, J. (2018). Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 14(4), pp. 702-714. https://doi.org/10.1080/15548627.2017.1407888
118. Qi, H., Xia, F.N. & Xiao, S. (2021). Autophagy in plants: physiological roles and post-translational regulation. J. Int. Plant Biol., 63, pp. 161-179. https://doi.org/10.1111/jipb.12941
119. Champion, A., Kreis, M., Mockaitis, K., Picaud, A. & Henry, Y. (2004). Arabidopsis kinome: after the casting. Functional & Integrative Genomics, 4, pp. 163-187. https://doi.org/10.1007/s10142-003-0096-4
120. Durek, P., Schmidt, R., Heazlewood, J.L., Jones, A., MacLean, D., Nagel, A., Kersten, B. & Schulze, W.X. (2010). PhosPhAt: the arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res., 38, D828-D834. https://doi.org/10.1093/nar/gkp810
121. van Wijk, K.J., Friso, G., Walther, D. & Schulze, W.X. (2014). Meta-analysis of Arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. The Plant Cell, 26, pp. 2367-2389. https://doi.org/10.1105/tpc.114.125815
122. Liao, C.-Y. & Bassham, D.C. (2019). Combating stress: the interplay between hormone signaling and autophagy in plants. J. Exp. Bot., 71, pp. 1723-1733. https://doi.org/10.1093/jxb/erz515
123. Hunter, T. (1995). When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell, 83, pp. 1-4. https://doi.org/10.1016/0092-8674(95)90225-2
124. Wu, Y., Shi, L., Li, L., Fu, L., Liu, Y., Xiong, Y. & Sheen, J. (2019). Integration of nutrient, energy, light, and hormone signaling via TOR in plants. J. Exp. Bot., 70, pp. 2227-2238. https://doi.org/10.1093/jxb/erz028
125. Margalha, L., Confraria, A. & Baena-Gonz«lez, E. (2019). SnRK1 and TOR: modulating growth-defense trade-offs in plant stress responses. J. Exp. Bot., 70, pp. 2261-2274. https://doi.org/10.1093/jxb/erz066
126. Retzer, K. & Weckwerth, W. (2023). Recent insights into metabolic and signaling events of directional root growth regulation and its implications for sustainable crop production systems. Front. Plant Sci., 14, 1154088. 10.3389/fpls.2023.1154088 https://doi.org/10.3389/fpls.2023.1154088
127. Baena-Gonzalez, E., Rolland, F., Thevelein, J.M. & Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signaling. Nature, 448, pp. 938-942. https://doi.org/10.1038/nature06069
128. Chen, L., Su, Z.Z., Huang, L., Xia, F.N., Qi, H., Xie, L.J., Xiao, S. & Chen, Q.F. (2017). The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis. Front. Plant Sci, 8, 1201. https://doi.org/10.3389/fpls.2017.01201
129. Soto-Burgos, J. & Bassham, D.C. (2017). SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana. PloS One, 12, e0182591. https://doi.org/10.1371/journal.pone.0182591
130. Pu, Y., Luo, X. & Bassham, D.C. (2017). TOR-dependent and -independent pathways regulate autophagy in arabidopsis thaliana. Front. Plant Sci., 8, 1204. https://doi.org/10.3389/fpls.2017.01204
131. Pu, Y.T., Soto-Burgos, J. & Bassham, D.C. (2017) Regulation of autophagy through SnRK1 and TOR signaling pathways. Plant Signal. Behav., 12, e1395128. https://doi.org/10.1080/15592324.2017.1395128
132. Nolan, T.M., Brennan, B., Yang, M., Chen, J., Zhang, M., Li, Z., Wang, X., Bassham, D.C. Walley, J., & Yin, Y. (2017). Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Develop. Cell, 41, No. 33-46, e7. https://doi.org/10.1016/j.devcel.2017.03.013
133. Montes, C., Wang, P., Liao. C.-Y., Nolan, T.M., Song, G., Clark, N.M., Elmore, J.M., Guo, H., Bassham, D.C., Yin, Y. & Walley, J.W. (2022). Integration of multi-omics data reveals interplay between brassinosteroid and target of rapamycin complex signaling in Arabidopsis. New Phytol., 236, pp. 893-910. https://doi.org/10.1111/nph.18404
134. Liao, C.-Y., Pu, Y., Nolan, T.M., Montes, C., Guo, H., Walley, J.W. & Yin, Y. (2023). Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in Arabidopsis. Autophagy, 19, pp. 1293-1310. https://doi.org/10.1080/15548627.2022.2124501
135. Zhang, B., Shao, L., Wang, J., Zhang, Y., Guo, X., Peng, Y., Cao, Y. & Lai, Z. (2021). Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens. Autophagy, 17, pp. 2093-2110. https://doi.org/10.1080/15548627.2020.1810426
136. Wang, P., Zhao, Y., Li, Z., Hsu, C.C., Liu, X., Fu, L., Hou, Y.J., Du, Y., Xie, S., Zhang, C., Gao, J., Cao, M., Huang, X., Zhu, Y., Tang, K., Wang, X., Tao, W.A., Xiong, Y. & Zhu, J.K. (2018). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol. Cell, 69, pp. 100-112, e6. https://doi.org/10.1016/j.molcel.2017.12.002
137. Rodriguez, M., Parola, R., Andreola, S., Pereyra, C. & MartHnez-Noel, G. (2019). TOR and SnRK1 signaling pathways in plant response to abiotic stresses: do they always act according to the «yin-yang» model? Plant Sci., 288, 110220. https://doi.org/10.1016/j.plantsci.2019.110220
138. Ahn, C.S., Ahn, H.-K. & Pai, H.-S. (2015). Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signaling pathway. J. Exp. Bot., 66, pp. 827-840. https://doi.org/10.1093/jxb/eru438
139. Aroca, A., Serna, A., Gotor, C. & Romero, L.C. (2015). S-sulfhydration: a cysteine posttranslational modification in plant systems. Plant Physiol., 168, pp. 334-342. https://doi.org/10.1104/pp.15.00009
140. Aroca, A., Benito, J.M., Gotor, C. & Romero, L.C. (2017). Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in various biological processes in Arabidopsis. J. Exp. Bot., 68, pp. 4915-4927. https://doi.org/10.1093/jxb/erx294
141. Jurado-Flores, A., Romero, L.C. & Gotor, C. (2021). Label-free quantitative proteomic analysis of nitrogen starvation in arabidopsis root reveals new aspects of H2S signaling by protein persulfidation. Antioxidants (Basel), 10, 508. https://doi.org/10.3390/antiox10040508
142. Gotor, C., GarcHa, I., Crespo, J.L. & Romero, L.C. (2013). Sulfide as a signaling molecule in autophagy. Autophagy, 9, pp. 609-611. https://doi.org/10.4161/auto.23460
143. Gotor, C., Aroca, A. & Romero, L.C. (2022). Persulfidation is the mechanism underlying sulfide-signaling of autophagy. Autophagy, 18, pp. 695-697. https://doi.org/10.1080/15548627.2021.1936357
144. Aroca, A., Yruela, I., Gotor, C. & Bassham D.C. (2021). Persulfidation of ATG18a regulates autophagy under ER stress in Arabidopsis. Proc. Natl. Acad. Sci. USA, 118, e2023604118. https://doi.org/10.1073/pnas.2023604118
145. Ђlvarez, C., GarcHa, I., Moreno, I., Pѕrez-Pѕrez, M.E., Crespo, J.L., Romero, L.C. & Gotor, C. (2012). Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in Arabidopsis. Plant Cell, 24, pp. 4621-4634. https://doi.org/10.1105/tpc.112.105403
146. Laureano-MarHn, A.M., Moreno, I., Romero, L.C. & Gotor, C. (2016). Negative regulation of autophagy by sulfide is independent of reactive oxygen species. Plant Physiol., 171, pp. 1378-91. https://doi.org/10.1104/pp.16.00110
147. Jurado-Flores, A., Aroca, A., Romero, L.C. & Gotor, C. (2023). Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis. J. Exp. Bot., 74, pp. 4654-4669. https://doi.org/10.1093/jxb/erad165
148. Xuan, L., Wu, H., Li, J., Yuan, G., Huang, Y., Lian, C., Wang, X., Yang, T. & Wang, C. (2022). Hydrogen sulfide reduces cell death through regulating autophagy during submergence in Arabidopsis. Plant Cell Rep., 41, 1531-1548. https://doi.org/10.1007/s00299-022-02872-z
149. Shangguan, L., Fang, X., Chen, L., Cui, L. & Fang, J. (2018). Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress. Planta, 247, pp. 1449-1463. https://doi.org/10.1007/s00425-018-2864-3
150. Chen, X., Li, C., Wang, H. & Guo, Z. (2019). WRKY transcription factors: evolution, binding, and action. Phytopathol. Res., 1, 13. https://doi.org/10.1186/s42483-019-0022-x
151. Song, I., Hong, S. & Huh, S.U. (2022). Identification and expression analysis of the Solanum tuberosum StATG8 family associated with the WRKY transcription factor. Plants (Basel), 11, 2858. https://doi.org/10.3390/plants11212858
152. Wang, Y., Cao, J.-J., Wang, K.-X., Xia, X.-J., Shi, K., Zhou, Y.-H., Yu, J.-Q. & Zhou, J. (2019). BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation in tomatoes. Plant Physiol., 179, pp. 671-685. https://doi.org/10.1104/pp.18.01028
153. Chi, C., Li, X., Fang, P., Xia, X., Shi, K., Zhou, Y., Zhou, J. & Yu, J. (2020). Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato. J. Exp. Bot., 71, pp. 1092-1106. https://doi.org/10.1093/jxb/erz466