Fiziol. rast. genet. 2023, vol. 55, no. 5, 371-394, doi: https://doi.org/10.15407/frg2023.05.371

What is missing to create new herbicides and solving the problem of resistance?

Morderer Ye.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The issue of weeds resistance to herbicides and potential solutions of this problem are considered. Alternatives to chemical methods of weed control are discussed. It is concluded that the introduction of alternative methods of weed control will reduce the relative part of herbicides in crop protection technologies, but complete rejection of the use of herbicides is unlikely. At the same time, the problem of resistance requires significant improvement of the chemical method, primarily by reducing the directed selection pressure of herbicides. It is stated that the most effective way to managing resistance is the complex application of herbicides with different mode of action. The requirements for anti-resistant herbicide compositions are discussed. It is noted that the current range of herbicides limits the choice of components for creating such compositions. It is concluded that the development of new effective herbicides with mode of action distinct from existing ones is necessary to managing resistance. Methods for finding new sites of herbicide action and causes for the unsatisfactory effectiveness of their implementation are discussed. The opinion is substantiated that to determine the criteria for choosing new sites of herbicide action, it is necessary to elucidate the mechanisms of herbicide-induced pathogenesis, and data on the involvement of programmed cell death in this process are discussed. Another important direction of research, necessary for determining these criteria, is the study of feedback loops that regulate the functioning of metabolic pathways and physiological systems of plants. The data on the peculiarities of the functioning of feedback loops, which control the expression of genes encoding the sites of action of the most effective classes of herbicides, are discussed.

Keywords: herbicides, resistance, new sites of action, herbicide-induced pathogenesis, programmed cell death, feedback regulation

Fiziol. rast. genet.
2023, vol. 55, no. 5, 371-394

Full text and supplemented materials

Free full text: PDF  

References

1. Kraehmer, H., Laber, B., Rosinger, C. & Shulz, A. (2014). Herbicides as weed control agents: state of the art: I. Weed control research and safener technology: the path to modern agriculture. Plant Physiology, 166, pp. 1119-1131. https://doi.org/10.1104/pp.114.241901

2. Kraehmer, H., Van Almsickб A., Beffaб R., Dietrich, H., Eckes, P., Hacker, E., Hain, R., Strek, H.J., Stuebler, H. & Willms, L. (2014). Herbicides as weed control agents: state of the art: II. Recent achievements. Plant Physiology, 166, pp. 1132-1148. https://doi.org/10.1104/pp.114.241992

3. Beckie, H.J. (2006). Herbicide-Resistant Weeds: Management Tactics and Practices. Weed Technology, 20(3), pp. 793-814. http://www.jstor.org/stable/4495755 https://doi.org/10.1614/WT-05-084R1.1

4. Powles, S. B. & Yu, Q. (2010). Evolution in action: plants resistant to herbicides. Annual review of plant biology, 61, pp. 317-347. https://doi.org/10.1146/annurev-arplant-042809-112119

5. Vencill, W.K., Nichols, R.L., Webster, T.M., Soteres, J.K., Mallory-Smith, C., Burgos, N.R., Johnson, W.G. & McClelland, M.R. (2012). Herbicide Resistance: Toward an Understanding of Resistance Development and the Impact of Herbicide-Resistant Crops. Weed Sci., 60 (1), pp. 2-30. http://www.jstor.org/stable/23264147 https://doi.org/10.1614/WS-D-11-00206.1

6. Shaner, D. (2014). Lessons Learned From the History of Herbicide Resistance. Weed Sci., 62 (2), pp. 427-431. https://doi.org/10.1614/WS-D-13-00109.1

7. Dѕlye, C., Jasieniuk, M. & Le Corre, V. (2013). Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics, 29 (11), pp. 649-658. https://doi.org/10.1016/j.tig.2013.06.001

8. Gaines, T.A., Duke, S.O., Morran, S., Rigon, C.A.G., Tranel, P.J., Kтpper, A. & Dayan, F.E. (2020). Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 295 (30), pp. 10307-10330. https://doi.org/10.1074/jbc.REV120.013572

9. Heap, I. The International Survey of Herbicide Resistant Weeds. Online. Internet. Thursday, May 5, 2022. Available www.weedscience.com

10. Shvartau, V.V. & Mixalska, L.M. (2022). Herbicide-resistant weed biotypes in Ukraine. Reports of the National Academy of Sciences of Ukraine, 6, pp. 85-94 [in Ukrainian]. https://doi.org/10.15407/dopovidi2022.06.085

11. Yu, Q. & Powles, S. (2014). Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiology, 166, pp. 1106-1118. https://doi.org/10.1104/pp.114.242750

12. Jugulam, M. Chandrima, S. (2019). Non-Target-Site Resistance to Herbicides: Recent Developments. Plants, 8 (10), 417. https://doi.org/10.3390/plants8100417

13. Hwang, J., Norsworthy, J.K., Piveta, L.B., De Carvalho Rocha Souza, M.C., Barber, L. T. & Butts, T.R. (2023). Metabolism of 2,4-D in resistant Amaranthus palmeri S. Wats. (Palmer amaranth). Crop Protection, 165, 106169. https://doi.org/10.1016/j.cropro.2022.106169

14. Caverzan, A., Piasecki, C., Chavarria, G., Stewart, C.N., Jr. & Vargas, L. (2019). Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides. International journal of molecular sciences, 20 (5), 1086. https://doi.org/10.3390/ijms20051086

15. Radchenko, M.P., Ponomareva, I.G., Pozynych, I.S. & Morderer, Ye.Yu. (2021). Stress and use of herbicides in field crop. Agriculture Science and Practice, 8 (3), pp. 50-70. https://doi.org/10.15407/agrisp8.03.050

16. Zhang, Y., Gao, H., Fang, J., Wang, H., Chen, J., Li, J. & Dong, L. (2022). Up-regulation of bZIP88 transcription factor is involved in resistance to three different herbicides in both Echinochloa crus-galli and E. Glabrescens. Journal of Experimental Botany, 73 (19), pp. 6916-6930. https://doi.org/10.1093/jxb/erac319

17. Gawlik-Dziki, U., WrzesiXska-Krupa, B., Nowak, R. PietrzakW., Zyprych-WalczakJ. & ObrДpalska-StДplowska, A. (2023). Herbicide resistance status impacts the profile of non-anthocyanin polyphenolics and some phytomedical properties of edible cornflower (Centaurea cyanus L.) flowers. Sci Rep., 13, 11538. https://doi.org/10.1038/s41598-023-38520-z

18. Gupta, S., Harkess, A., Soble, A., Van Etten, M., Leebens-Mack, J. & Baucom, R.S. (2023). Interchromosomal linkage disequilibrium and linked fitness cost loci associated with selection for herbicide resistance. New Phytol., 238, pp. 263-1277. https://doi.org/10.1111/nph.18782

19. Lu, H., Liu, Y., Li, M., Han, H., Zhou, F., Nyporko, A., Yu, Q., Qiang, S. & Powles, S. (2023). Multiple Metabolic Enzymes Can Be Involved in Cross-Resistance to 4-Hydroxyphenylpyruvate-Dioxygenase-Inhibiting Herbicides in Wild Radish. J. Agric. Food Chem., 71 (24), pp. 9302-9313. https://doi.org/10.1021/acs.jafc.3c01231

20. Takano, H., Greenwalt, S., Ouse, D., Zielinski, M. & Schmitzer, P. (2023). Metabolic cross-resistance to florpyrauxifen-benzyl in barnyardgrass (Echinochloa crus-galli) evolved prior to its commercialization. Weed Science, 71 (2), pp. 77-83. https://doi.org/10.1017/wsc.2023.11

21. Palma-Bautista, C., V«zquez-GarcHa, J.G., De Portugal, J., Bastida, F., Alc«ntara-de la Cruz, R., Osuna-Ruiz, M.D., Torra, J. & De Prado, R. (2023). Enhanced detoxification via Cyt-P450 governs cross-tolerance to ALS-inhibiting herbicides in weed species of Centaurea. Environmental pollution (Barking, Essex: 1987), 322, 121140. https://doi.org/10.1016/j.envpol.2023.121140

22. Palma-Bautista, C., Belluccini, P., V«zquez-GarcHa, J.G., Alc«ntara-de la Cruz, R., Barro, F., Portugal, J. & De Prado, R. (2023). Target-site and non-target-site resistance mechanisms confer multiple resistance to glyphosate and 2,4-D in Carduus acanthoides. Pesticide Biochemistry and Physiology, 191. https://doi.org/10.1016/j.pestbp.2023.105371

23. Bobadilla, L.K., Tranel, P.J. (2023). Predicting the unpredictable: The regulatory nature and promiscuity of herbicide cross resistance. Pest Manag Sci. Accepted Author Manuscript. https://doi.org/10.1002/ps.7728

24. Woong Park, K. & Mallory-Smith, C. (2005). Mutiple herbicide resistance in downy brome (Bromus tectorum) and it impact on fitness. Weed Sci., 53 (6), pp. 780-786. https://doi.org/10.1614/WS-05-006R1.1

25. Geddes, C.M, Pittman, M.M., Hall, L.M., Topinka, A. K., Sharpe, S.M., Leeson, J.Y. & Beckie, H.J. (2022). Increasing frequency of multiple herbicide-resistant kochia (Bassia scoparia) in Alberta. Canadian Journal of Plant Science, 103 (2), pp. 233-237. https://doi.org/10.1139/cjps-2022-0224

26. Shaw, D. R. (2016). The «wicked» nature of the herbicide resistance problem. Weed Sci., 64 (S1), pp. 552-558. https://doi.org/10.1614/WS-D-15-00035.1

27. Barrett, M., Ervin, D.E., Frisvold, G.B., Jussaume, R.A., Shaw, D.R. & Ward, S.M. (2017). A wicked view. Weed Sci., 65 (4), pp. 441-443. https://doi.org/10.1017/wsc.2017.20

28. Harker, K.N., Mallory-Smith, C., Maxwell, B.D., Mortensen, D.A. & Smith, R.G. (2017). Another view. Weed Sci., 65 (2), pp. 203-205. https://doi.org/10.1017/wsc.2016.30

29. Harker, K. & O'Donovan, J. (2013). Recent Weed Control, Weed Management, and Integrated Weed Management. Weed Technology, 27 (1), pp. 1-11. https://doi.org/10.1614/WT-D-12-00109.1

30. Westwood, J.H., Charudattan, R., Duke, S.O., Fennimore, S.A., Marrone, P., Slaughter, D.C., Swanton, C. & Zollinger, R. (2018). Weed Management in 2050: Perspectives on the Future of Weed Science. Weed Sci, 66 (3), pp. 275-285. https://doi.org/10.1017/wsc.2017.78

31. Duke, S.O., Powles, S.B. & Sammons, R.D. (2018). Glyphosate - How it Became a Once in a Hundred Year Herbicide and Its Future. Outlooks on Pest Management, 29 (6), pp. 247-251(5). https://doi.org/10.1564/v29_dec_03

32. Bernoldson, N-O. (2010). Breeding spring wheat for improved allelopathic potential. Weed Research, 50 (1), pp. 49-57. https://doi.org/10.1111/j.1365-3180.2009.00754.x

33. Seal, A.N., Pratley, J.E. (2010). The specificity of allelopathy in rice (Oryza sativa) Weed Research, 50(4), pp. 303-311. https://doi.org/10.1111/j.1365-3180.2010.00783.x

34. Hada, Z., Jenfaoui, H., Khammassi, M., Matmati, A. & Souissi, T. (2022). Allelopathic effect of barley (Hordeum vulgare) and rapeseed (Brassica napus) crops on early growth of acetolactate synthase (ALS)-resistant Glebionis coronaria. Tunisian Journal of Plant Protection, 17 (2), pp. 55-66. https://doi.org/10.52543/tjpp.17.2.2

35. Spoth, M., Haring, S., Everman, W., Reberg-Horton, C., Greene, W. & Flessner, M. (2022). Narrow-windrow burning to control seeds of Italian ryegrass (Lolium perenne ssp. multiflorum) in wheat and Palmer amaranth (Amaranthus palmeri) in soybean. Weed Technology, 36 (5), pp. 716-722. https://doi.org/10.1017/wet.2022.70

36. Perotti, V.E., Larran, A.S., Palmieri, V.E., Martinatto, A.K. & Permingeat, H.R. (2020). Herbicide resistant weeds: a call to integrate conventional agricultural practices, molecular biology knowledge and new technologies. Plant Science, 290, 110255. https://doi.org/10.1016/j.plantsci.2019.110255

37. Moore, L., Jennings, K., Monks, D., Boyette, M., Leon, R., Jordan, D., Ippolito, S., Blankenship, C. & Chang, P. (2023). Evaluation of electrical and mechanical Palmer amaranth (Amaranthus palmeri) management in cucumber, peanut, and sweetpotato. Weed Technology, 37 (1), pp. 53-59. https://doi.org/10.1017/wet.2023.1

38. Duke, S.O. (2023), Why are there no widely successful microbial bioherbicides for weed management in crops? Pest Manag Sci. https://doi.org/10.1002/ps.7595

39. Broster, J.C., Jalaludin, A., Widderick, M.J., Chambers, A.J. & Walsh, M.J. (2023). Herbicide Resistance in Summer Annual Weeds of Australia's Northern Grains Region. Agronomy, 13 (7), 1862. https://doi.org/10.3390/agronomy13071862

40. Gressel, J. & Segel, L.A. (1990). Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technology, 41), pp. 186-198. https://doi.org/10.1017/S0890037X00025215

41. Gressel, J. (1992). Honorary Member Address: Addressing Real Weed Science Needs with Innovations. Weed Technology, 63), pp. 509-525. http://www.jstor.org/stable/3987204 https://doi.org/10.1017/S0890037X00035739

42. Norsworthy, J..K., Ward, S.M., Shaw, D.R., Llewellyn, R.S., Nichols, R.L., Webster, T.M., Bradley, K.W., Frisvold, G., Powles, S.T., Burgos, N.R., Witt, W.W. & Barret, M. (2012). Reducing the risk of herbicide resistance: best management practices and recommendation. Weed Sci., 60 (SP1), pp. 31-62. ttps://doi.org/10.1614/WS-D-11-00155.1 https://doi.org/10.1614/WS-D-11-00155.1

43. Devos, Y, Reheul, D., De Schrijver, A, Cors, F. & Moens, W. (2004). Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow. Environ Biosafety Res., 3 (3), pp. 135-48. https://doi.org/10.1051/ebr:2005001

44. Tan, S., Evans, R.R., Dahmer, M.L., Singh, B.K. & Shaner, D.L. (2005). Imidazolinone-tolerant crops?: history, current status and future. Pest Manag Sci., 61 (3), pp. 246-257. https://doi.org/10.1002/ps.993

45. Li, H., Li, J., Zhao, B., Wang, J., Yi, L., Liu, C., Wu, J., King, G.J. & Liu K. (2015). Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility. Theor Appl. Genet., 128, pp. 107-118. https://doi.org/10.1007/s00122-014-2415-7

46. Sebastian, S.A., Fader, G.M., Ulrich, J.F., Forney, D.R. & Chaleff, R.S. (1989). Semidominant Soybean Mutation for Resistance to Sulfonylurea Herbicides. Crop Science, 29, pp. 1403-1408. https://doi.org/10.2135/cropsci1989.0011183X002900060014x

47. Wei, T, Jiang, L, You, X, Ma, P, Xi, Z. & Wang, N.N. (2023). Generation of Herbicide-Resistant Soybean by Base Editing. Biology, 12 (5), 741. https://doi.org/10.3390/biology12050741

48. Ustun, R. & Uzun, B. (2023). Development of a High Yielded Chlorsulfuron-Resistant Soybean (Glycine max L.) Variety through Mutation Breeding. Agriculture, 13 (3), 559. https://doi.org/10.3390/agriculture13030559

49. Bozic, D., Saric, M., Malidza, G., Ritz, C. & Vrbnicanin, S. (2012). Resistance of sunflower hybrids to imazamox and tribenuron-methyl, Crop Protection, 39, pp. 1-10. https://doi.org/10.1016/j.cropro.2012.04.009

50. Sala, C.A., Bulos, M., Alteri, E. & Ramos, M.L. (2012). Genetics and breeding of herbicide tolerance in sunflower. Helia, 35 (57), pp. 57-70. https://doi.org/10.2298/HEL1257057S

51. Diggle, A.J., Neve, P.B. & Smith, F.P. (2003). Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Research, 43 (5), pp. 371-382. https://doi.org/10.1046/j.1365-3180.2003.00355.x

52. Hongle, X., Lanlan, S., Wangcang, S., Muhan, Y., Mingbo, J., Fei, X., Chuantao, L. & Renhai, W. (2023). Confirmation and chemical control of acetyl-CoA carboxylase- and acetolactate synthase-resistant Japanese foxtail in China. Crop Protection, 169, 106257. https://doi.org/10.1016/j.cropro.2023.106257

53. Soltani, N., Shropshire, C. & Sikkema, P. (2022). Control of glyphosate-resistant horseweed with Group 4 herbicides in soybean. Weed Technology, 36 (5), pp. 643-647. https://doi.org/10.1017/wet.2022.61

54. Dhanda, S., Kumar, V., Geier, P., Currie, R., Dille, J., Obour, A., Yager E. & Holman, J. (2023). Synergistic interactions of 2,4-D, dichlorprop-p, dicamba, and halauxifen/fluroxypyr for controlling multiple herbicide-resistant kochia (Bassia scoparia L.). Weed Technology, 1-8. https://doi.org/10.1017/wet.2023.48

55. Yadav, R., Jha, P., Hartzler, R. & Liebman, M. (2023). Multi-Tactic Strategies to Manage Herbicide-Resistant Waterhemp (Amaranthus tuberculatus) in Corn-Soybean Rotations of the Midwestern U.S. Weed Sci., 71 (2), pp. 141-149. https://doi.org/10.1017/wsc.2023.10

56. Green, J. (2007). Review of Glyphosate and ALS-Inhibiting Herbicide Crop Resistance and Resistant Weed Management. Weed Technology, 21 (2), pp. 547-558. https://doi.org/10.1614/WT-06-004.1

57. Yu, X., Sun, Y., Lin, C., Wang, P., Shen, Z. & Zhao, Y. (2023). Development of Transgenic Maize Tolerant to Both Glyphosate and Glufosinate. Agronomy, 13 (1), 226. https://doi.org/10.3390/agronomy13010226

58. Godar, A., Norsworthy, J. & Barber, T. (2023). Enlist™ Corn Tolerance to Preemergence and Postemergence Applications of Synthetic Auxin and ACCase-inhibiting Herbicides. Weed Technology, 37 (2), pp. 147-155. https://doi.org/10.1017/wet.2023.25

59. Duenk, E., Soltani, N., Miller, R., Hooker, D., Robinson, D. & Sikkema, P. (2023). Multiple herbicide-resistant waterhemp control in glyphosate/glufosinate/2,4-D-resistant soybean with one- and two-pass weed control programs. Weed Technology, 37 (1), pp. 34-39. https://doi.org/10.1017/wet.2023.6

60. Morderer, Y.Y. & Merejinskiy, Y.G. (2009). Herbicides. V 1. Mechanisms of action and practice of application. Kyiv, Logos, 379 p. [in Ukrainian].

61. Zhang, J., Hamill, A. & Weaver, S. (1995). Antagonism and Synergism Between Herbicides: Trends from Previous Studies. Weed Technology, 9 (1), pp. 86-90. https://doi.org/10.1017/S0890037X00023009

62. Isaacs, M.A., Hatzios, K.K., Henry, P. Wilson, H.P. Isaacs, M.A., Hatzios, K.K., Henry, P. Wilson & Joe Toler. (2006). Halosulfuron and 2,4-D Mixtures' Effects on Common Lambsquarters (Chenopodium album). Weed Technology, 20(1), pp. 137-142. https://www.jstor.org/stable/4495655 https://doi.org/10.1614/WT-04-317R.1

63. Sobiech, L., Joniec, A., Lorys, B., Rogulski, J., Grzanka, M. & Idziak, R. (2023). Autumn Application of Synthetic Auxin Herbicide for Weed Control in Cereals in Poland and Germany. Agriculture, 13(1), 32. https://doi.org/10.3390/agriculture13010032

64. Yukhymuk, V.V., Radchenko, M.P., Sytnyk, S.K. & Morderer, Ye.Yu. (2021). Interaction effect in the tank mixtures of herbicides diflufenican, metribuzin and canfentrazone. Fisiol. rast genet., 53 (6), pp. 513-522. https://doi.org/10.15407/frg2021.06.513

65. Yukhymuk, V.V., Radchenko, M.P. Guralchuk, Zh.Z. & Morderer, Ye.Yu. (2022). Efficacy of weed control by herbicides diflufenican, metribuzin and carfentrazone when applied in winter wheat crops in autumn. Fisiol. rast genet., 54 (2), pp. 148-160. https://doi.org/10.15407/frg2022.02.148

66. Yukhymuk, V., Radchenko, M., Guralchuk, Zh., Rodzevych, O., Khandezhyna, M. & Morderer, Ye. (2023). Effectiveness of weed control by tank mixture of herbicides aclonifen and prometryn on sunflower crops. Bulg. J. Agric. Sci., 29 (3), pp. 481-489.

67. Duus, J., Kruse, N.D. & Streibig, J.C. (2018). Effect of mesotrione and nicosulfuron mixtures with or without adjuvants. Planta Daninha, 36, pp. 1-11. https://doi.org/10.1590/s0100-83582018360100116

68. Yukhymuk, V.V., Radchenko, M.P., Sytnik, S.K. & Morderer, Y.Y. (2022). Effects of interaction and effectiveness of weed control when using tank mixtures of herbicides in maize crops. Regulatory Mechanisms in Biosystems, 13 (2), pp. 114-120. https://doi.org/10.15421/022216

69. Walsh, M.J., Stratford, K., Stone, K. & Powles, S.B. (2012). Synergistic effects of atrazine and mesotrione on susceptible and resistant wild radish (Raphanus raphanistrum) populations and the potential for overcoming resistance to triazine herbicides. Weed Technol., 26 (2), pp. 341-347. https://doi.org/10.1614/WT-D-11-00132.1

70. O'Brien, S.R., Davis, A.S. & Riechers, D.E. (2018). Quantifying Resistance to Isoxaflutole and Mesotrione and Investigating Their Interactions with Metribuzin POST in Waterhemp (Amaranthus tuberculatus). Weed Sci., 66 (5), pp. 586-594. https://doi.org/10.1017/wsc.2018.36

71. Osipitan, O.A., Scott, J.E. & Knezevic, S.Z. (2018). Tolpyralate Applied Alone and with Atrazine for Weed Control in Corn. The Journal of Agricultural Science, 10 (10), pp. 32-39. https://doi.org/10.5539/jas.v10n10p32

72. Willemse, C., Soltani, N., Benoit, L., Jhala, A.J., Hooker, D.C., Robinson, D.E. & Sikkema, P.H. (2021). Is There a Benefit of Adding Atrazine to HPPD-Inhibiting Herbicides for Control of Multiple-Herbicide-Resistant, Including Group 5-Resistant, Waterhemp in Corn? Journal of Agricultural Science, 13 (7), pp. 21-31. https://doi.org/10.5539/jas.v13n7p21

73. Duke, S.O. (2012). Why have no new herbicide modes of action appeared in recent years? Pest Manag Sci., 68 (4), pp. 505-512. https://doi.org/10.1002/ps.2333

74. Duke, S.O., Stidham, M.A. & Dayan, F.E. (2019). A novel genomic approach to herbicide and herbicide mode of action discovery. Pest. Manag. Sci., 75(2), pp. 314-317. https://doi.org/10.1002/ps.5228

75. Dayan, F.E. & Duke, S.O. (2020). Discovery for New Herbicide Sites of Action by Quantification of Plant Primary Metabolite and Enzyme Pools. Engineering, 6 (5), pp. 509-514. https://doi.org/10.1016/j.eng.2020.03.004

76. Qu, R.-Y., He, B., Yang, J.-F., Lin, H.-Y., Yang, W.-C., Wu, Q.-Y., Li, Q.X. & Yang, G.-F. (2021). Where are the new herbicides? Pest Manag Sci, 77 (6), pp. 2620-2625. https://doi.org/10.1002/ps.6285

77. Sparks, T.C. & Lorsbach, B.A. (2017). Perspectives on the agrochemical industry and agrochemical discovery. Pest. Manag. Sci., 73 (4), pp. 672-677. https://doi.org/10.1002/ps.4457

78. Chen, S., Fabbri, B., CaJacob, C., Anderson, J. & Duff, S. (2007). Suppression of CtpA in mouseearcress produces a phytotoxic effect: validation of CtpA as a target for herbicide development. Weed Sci., 55 (4), pp. 283-287. https://doi.org/10.1614/WS-07-019

79. Hall, C.J, MackieE. RR., Gendall, A.R, Perugini, M.A. & Soares da Costa, T.P. (2020). Review: amino acid biosynthesis as a target for herbicide development. Pest Management Science, 76 (12), pp. 3896-3904. https://doi.org/10.1002/ps.5943

80. Yan, Y., Liu, Q., Zang, X., Yuan, X., Bat-Erdene, U., Nguyen, C., Gan, J., Zhou, J., Jacobsen, S.E. & Tang Y. (2018). Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature, 559, pp. 415-418. https://doi.org/10.1038/s41586-018-0319-4

81. Zabalza, A., Zulet, A., Gil-Monreal, M., Igal, M. & Royuela, M. (2013) Branched-chain amino acid biosynthesis inhibitors: herbicide efficacy is associated with an induced carbon-nitrogen imbalance. J. Plant Physiol., 170 (9), pp. 814-821. https://doi.org/10.1016/j.jplph.2013.01.003

82. Dayan, F.E. & Duke, S.O. (2014). Natural Compounds as Next-Generation Herbicides, Plant Physiology, 166 (3), pp. 1090-1105. https://doi.org/10.1104/pp.114.239061

83. Lee, D.L., Prisbylla, M.P., Cromartie, T.H., Dagarin, D.P., Howard, S.W., Provan, W.M. & Mutter, L.C. (1997). The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci., 45 (5), pp. 601-609. https://doi.org/10.1017/S0043174500093218

84. Vivancos, P.D., Driscoll, S.P., Bulman, C.A., Ying, L., Emami, K., Treumann, A., Mauve, C., Noctor, G. & Foyer, C.H. (2011). Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration, Plant Physiology, 157 (1), pp. 256-268. https://doi.org/10.1104/pp.111.181024

85. Maroli, A., Gaines, T., Foley, M., Duke, S., Dopramacэ, M., Anderson, J., Horvath, D.P., Chao, W.S. & Tharayil, N. (2018). Omics in Weed Science: A Perspective from Genomics, Transcriptomics, and Metabolomics Approaches. Weed Sci., 66 (6), pp. 681-695. https://doi.org/10.1017/wsc.2018.33

86. Zulet-Gonzalez, A., Gorzolka, K., Doll, S., Gil-Monreal, M., Royuela, M. & Zabalza, A. (2023). Unravelling the Phytotoxic Effects of Glyphosate on Sensitive and Resistant Amaranthus palmeri Populations by GC-MS and LC-MS Metabolic Profiling. Plants, 12 (6), 1345. https://doi.org/10.3390/plants12061345

87. Maroli, A., Nandula, V., Duke, S. Tharayil, N. (2016). Stable Isotope Resolved Metabolomics Reveals the Role of Anabolic and Catabolic Processes in Glyphosate-Induced Amino Acid Accumulation in Amaranthus palmeri Biotypes. J. Agric. Food Chem., 64 (37), pp. 7040-7048. https://doi.org/10.1021/acs.jafc.6b02196

88. Maroli, A., Nandula, V., Dayan, F., Duke S., Gerard P. & Tharayil, N. (2015). Metabolic Profiling and Enzyme Analyses Indicate a Potential Role of Antioxidant Systems in Complementing Glyphosate Resistance in an Amaranthus palmeri Biotype. J. Agric. Food Chem., 63 (41), pp. 9199-209. https://doi.org/10.1021/acs.jafc.5b04223

89. Sandhu, P.K., Leonard, E., Nandula, V. & Tharayil, N. (2023). Global Metabolome of Palmer Amaranth (Amaranthus palmeri) Populations Highlights the Specificity and Inducibility of Phytochemical Responses to Abiotic Stress. J. Agric. Food Chem., 2023, XXXX, XXX, XXX-XXX https://doi.org/10.1021/acs.jafc.2c07162

90. Piasecki, C, Yang, Y, Benemann, D.P., Kremer, F.S., Galli, V., Millwood, R.J., Cechin, J., Agostinetto, D., Maia, L.C. & Vargas, L., (2019). Transcriptomic Analysis Identifies New Non-Target Site Glyphosate-Resistance Genes in Conyza bonariensis. Plants, 8 (6), 157. https://doi.org/10.3390/plants8060157

91. Hu, M., Zhang, H., Kong, L., Ma, J., Wang , T., Lu, X., Guo, Y., ZhangJ., Guan, R. & Chu, P. (2023) Comparative proteomic and physiological analyses reveal tribenuron-methyl phytotoxicity and nontarget-site resistance mechanisms in Brassica napus. Plant Cell and Enviroment, 46 (7), pp. 2255-2272. https://doi.org/10.1111/pce.14598

92. Bjelk, L. & Monaco, T. (1992). Effect of chlorimuron and quizalofop on fatty acid biosynthesis. Weed Sci., 40 (1), pp. 1-6. https://doi.org/10.1017/S004317450005685X

93. Morderer, Y.Y., Radchenko, M.P. & Sychuk A.M. (2013). Programmed cell death in pathogenesis induced in plants by herbicides. Fisiol. rast genet., 45 (6), pp. 517-526.

94. Chen, S. & Dickman, M. (2004). Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J. Exp. Bot., 55 (408), pp. 2617-2623. https://doi.org/10.1093/jxb/erh275

95. De Freitas, D., Coelho, M., Souza, M., Marques, A. & Ribeiro, B. (2007). Introduction of the anti-apoptotic baculovirus p35 gene in passion fruit induces herbicide tolerance, reduced bacterial lesions, but does not inhibits passion fruit woodiness disease progress induced by cowpea aphid-borne mosaic virus (CABMV). Biotecnology Letters, 29, pp. 79-87. https://doi.org/10.1007/s10529-006-9201-9

96. Graham, M.Y. (2005). The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in Soybean. Plant Physiology, 139 (4), pp. 1784-1794. https://doi.org/10.1104/pp.105.068676

97. Chichkova, N.V. Shaw, J., Galiullina, R.A., Drury, G.E., Tuzhikov, A.I., Kim, S.H., Kalkum, M., Hong, T.B., Gorshkova, E.N., Torrance, L., Vartapetian, A.B. & Taliansky, M. (2010). Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. The EMBO Journal, 29 (6), pp. 1149-1161. https://doi.org/10.1038/emboj.2010.1

98. Ozheredov, S.P., Emets, A.I., Litvin, D.I., Britsun, V.N., Shvartau, V.V., Lozinskii, M.O. & Blium, I.aB. (2010). Tsitologiia i genetika, 44 (5), pp. 54-59. PMID: 21061692 https://doi.org/10.3103/S0095452710050087

99. Sychuk, A.M., Radchenko, M.P. & Morderer, Ye.Yu. (2013). Programmed cell death in the pathogenesis induced by herbicides acetyl-CoA carboxylase inhibitors. Biological Studies, 2, pp. 101-106. https://doi.org/10.30970/sbi.0702.294

100. Sychuk, A.M. (2015). Participation of programmed cell death in herbicide-induced pathogenesis: author's abstract for obtaining PhD degree in biology sciences: specialty 03.00.12 «Plant physiology», K., 21 p.

101. Reape, T.J., Molony, E.M. & Mccabe, P.F. (2008). Programmed cell death in plants: distinguishing between different modes. Exp. Bot., 59 (3), pp. 435-444. https://doi.org/10.1093/jxb/erm258

102. Lockshin, R.A. & Zakeri, Z. (2004). Apoptosis, autophagy, and more. Int. J. Biochem. Cell Biol., 36 (12), pp. 2405-2419. https://doi.org/10.1016/j.biocel.2004.04.011

103. Golstein, P. & Kroemer, G. (2007). Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci., 32 (1), pp. 37-43. https://doi.org/10.1016/j.tibs.2006.11.001

104. Kacprzyk, J., Daly C.T. & McCabe, P.F. (2011). The Botanical Dance of Death: Programmed Cell Death in Plants. In Jean-Claude Kader and Michel Delseny, editors: Advances in Botanical Research, Vol. 60, Burlington: Academic Press, pp. 169-261. https://doi.org/10.1016/B978-0-12-385851-1.00004-4

105. Radchenko, M.P., Gurianov, D.S. & Morderer, Ye.Yu. (2022). DNA fragmentation and endonuclease activity under the effect of herbicides acetyl-CoA-carboxy-lase and acetolactate synthase inhibitors. Fisiol. rast. genet., 54 (5), pp. 404-418. https://doi.org/10.15407/frg2022.05.404

106. Pѕrez-Pѕrez, M.E., Lemaire, S.D. & Crespo, J.L. (2012). Reactive oxygen species and autophagy in plants and algae. Plant Physiol., 160 (1), pp. 156-64. https://doi.org/10.1104/pp.112.199992

107. Wang, Y., Zheng, X., Yu, B., Han, S., Guo, J., Tang, H., Yu, A.Y.L., Deng, H., Hong, Y. & Liu, Y. (2015). Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy. Autophagy, 11:12, pp. 2259-2274. https://doi.org/10.1080/15548627.2015.1113365

108. Xiong, Y., Contento, A.L., Nguyen, P.Q. & Bassham, D.C. (2007). Degradation of Oxidized Proteins by Autophagy during Oxidative Stress in Arabidopsis. Plant Physiology, 143 (1), pp. 291-299. https://doi.org/10.1104/pp.106.092106

109. Shin, J.-H., Yoshimoto, K., Ohsumi, Y., Jeon, J.-S. & An, G. (2009) OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Molecules and Cells, 27 (1), pp. 67-74. https://doi.org/10.1007/s10059-009-0006-2

110. Minina, E.A., Moschou, P.N., Vetukuri, R.R., Sanchez-Vera, V., Cardoso, C., Liu, Q. & Bozhkov, P.V. (2018). Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. Journal of Experimental Botany, 69 (6), pp. 1415-1432. https://doi.org/10.1093/jxb/ery010

111. Olenieva, V., Lytvyn, D., Yemets, A., Bergounioux, C., Blume, Y. (2019). Tubulin acetylation accompanies autophagy development induced by different abiotic stimuli in Arabidopsis thaliana. Cell Biol Int., 43 (9), pp. 1056-1064. https://doi.org/10.1002/cbin.10843

112. Zhao, L., Jing, X., Chen, L., Liu, Y., Su, Y., Liu, T., Gao, C., Yi, B., Wen J., Ma, C., Tu, J., Zou, J., Fu, T. & Shen, J. (2015). Tribenuron-Methyl Induces Male Sterility through Anther-Specific Inhibition of Acetolactate Synthase Leading to Autophagic Cell Death. Molec. Plant, 8 (12), pp. 1710-1724. https://doi.org/10.1016/j.molp.2015.08.009

113. Zhao L., Deng L., Zhang Q., Jing X., Ma, M., Yi, B., Wen, J., Ma, C., Tu, J., Fu, T. & Shen, J. (2018). Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 14 (4), pp. 702-714. https://doi.org/10.1080/15548627.2017.1407888

114. Stidham, M.A. (1991). Herbicides That Inhibit Acetohydroxyacid Synthase. Weed Sci., 39 (3), pp. 428-434. http://www.jstor.org/stable/4044976 https://doi.org/10.1017/S0043174500073197

115. Endo, M., Shimizu, T., Fujimori, T., Yanagisawa, S. & Toki, S. (2013). Herbicide-Resistant Mutations in Acetolactate Synthase Can Reduce Feedback Inhibition and Lead to Accumulation of Branched-Chain Amino Acids. Food and Nutrition Sciences, 4(5), pp. 522-528. https://doi.org/10.4236/fns.2013.45067

116. Hofius, D., Munch, D., Bressendorff, S., Mundy, J. & Petersen M. (2011). Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ., 18, pp. 1257-1262. https://doi.org/10.1038/cdd.2011.43

117. Ґstтn, S., Hafrѕn, A. & Hofius, D. (2017). Autophagy as a mediator of life and death in plants. Current Opinion in Plant Biology, 40, pp. 122-130. https://doi.org/10.1016/j.pbi.2017.08.011

118. Fern«ndez-Escalada, M., Zulet-Gonz«lez, A., Gil-Monreal, M., Zabalza, A., Ravet, K., Gaines, T. & Royuela, M. (2017). Effects of EPSPS Copy Number Variation (CNV) and glyphosate application on the aromatic and branched chain amino acid synthesis pathways in Amaranthus palmeri. Front. Plant Sci., Sec. Agroecology, 8. https://doi.org/10.3389/fpls.2017.01970

119. Zulet-Gonz«lez, A., Barco-AntoФanzas, M., Gil-Monreal, M., Royuela, M. & Zabalza, A. (2020). Increased glyphosate-induced gene expression in the shikimate pathway is abolished in the presence of aromatic amino acids and mimicked by shikimate. Front. Plant Sci., Sec. Plant Metabolism and Chemodiversity, 11. https://doi.org/10.3389/fpls.2020.00459

120. Rangani, G., Porri, A., Salas-Perez, R.A., Lerchl, J., Karaikal, S.K., Vel«squez, J.C. & Roma-Burgos, N. (2023). Assessment of Efficacy and Mechanism of Resistance to Soil-Applied PPO Inhibitors in Amaranthus palmeri. Agronomy, 13, 592. https://doi.org/10.3390/agronomy13020592

121. Li, W., Wu, C., Wang, M., Jiang, M., Zhang, J., Liao, M., Cao, H. & Zhao, N. (2022). Herbicide Resistance Status of Italian Ryegrass (Lolium multiflorum Lam.) and Alternative Herbicide Options for Its Effective Control in the Huang-Huai-Hai Plain of China. Agronomy, 12, 2394. https://doi.org/10.3390/agronomy12102394

122. Fang, J., He, Z., Liu T., Li, J. & Dong, L. (2020). A novel mutation Asp-2078-Glu in ACCase confers resistance to ACCase herbicides in barnyardgrass (Echinochloa crus-galli). Pestic Biochem Physiol., 168, 104634. https://doi.org/10.1016/j.pestbp.2020.104634

123. Huan, Z., Xu, Z., Lv, D. & Wang, J. (2013). Determination of ACCase Sensitivity and Gene Expression in Quizalofop-Ethyl-Resistant and -Susceptible Barnyardgrass (Echinochloa crus-galli) Biotypes. Weed Sci., 61 (4), pp. 537-542. https://doi.org/10.1614/WS-D-13-00010.1

124. Gonz«lez-Torralva, F. & Norsworthy, J.K. (2023). Overexpression of Acetyl CoA Carboxylase 1 and 3 (ACCase1 and ACCase3), and CYP81A21 were related to cyhalofop resistance in a barnyardgrass accession from Arkansas. Plant Signaling & Behavior, 18:1, 2172517. https://doi.org/10.1080/15592324.2023.2172517

125. Akbarabadi, A., Ismaili, A., Nazarian Firouzabadi, F., Ercisli, S. & Kahrizi, D. (2023). Assessment of ACC and P450 Genes Expression in Wild Oat (Avena ludoviciana) in Different Tissues Under Herbicide Application. Biochem Genet. https://doi.org/10.1007/s10528-023-10357-1

126. Yang, J., Yu, Ha,, Cui, H., Chen, J. & Li X. (2022). PsbA gene over-expression and enhanced metabolism conferring resistance to atrazine in Commelina communis. Pesticide Biochemistry and Physiology, 188. https://doi.org/10.1016/j.pestbp.2022.105260

127. Bayramov, S., Varanasi, V.K., Vara Prasad, P. V. & Jugulam M. (2023). Expression of Herbicide Target-Site and Chloroplastic Genes in Response to Herbicide Applications in Italian Ryegrass (Lolium multiflorum ssp. multiflorum (Lam.)). Journal of Agricultural Science, 15 (5). https://doi.org/10.5539/jas.v15n5p23

128. Takahashi, S. & Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends in Plant Science, 13 (4), pp. 178-182. https://doi.org/10.1016/j.tplants.2008.01.005

129. Iwakami, S, Uchino, A, Watanabe, H, Yamasue, Y. & Inamura, T. (2012) Isolation and expression of genes for acetolactate synthase and acetyl-CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species. Pest Manag. Sci., 68 (7), pp. 1098-106. https://doi.org/10.1002/ps.3287

130. Mithila, J., Hall, J., Johnson, W., Kelley, K. & Riechers, D. (2011). Evolution of Resistance to Auxinic Herbicides: Historical Perspectives, Mechanisms of Resistance, and Implications for Broadleaf Weed Management in Agronomic Crops. Weed Sci., 59 (4), pp. 445-457. https://doi.org/10.1614/WS-D-11-00062.1

131. Duke, S.O., Lydon, J., Becerril, J.M., Sherman, T.D., Lehnen, L.P. & Matsumoto, H. (1991). Protoporphyrinogen Oxidase-Inhibiting Herbicides. Weed Science, 39 (3), pp. 465-473. http://www.jstor.org/stable/4044980 https://doi.org/10.1017/S0043174500073239

132. Dayan, F.E. (2023). Trends in Weed Science Research Since 2010. Outlooks on Pest Management, 34 (3), pp. 96-98. https://doi.org/10.1564/v34_jun_01