Fiziol. rast. genet. 2023, vol. 55, no. 2, 150-162, doi: https://doi.org/10.15407/frg2023.02.150

The influence of root hypoxia on the photosynthetic apparatus of spinach during hydroponic cultivation

Topchiy N.M., Dadyka V.V., Zolotareva O.K.

  • M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereshchenkivska St., Kyiv, 01004, Ukraine

The aim of the work was to study the effect of oxygen deficiency at root level on the photosynthetic characteristics of spinach leaves. Spinach plants (Spinacia oleracea L.) were grown for 40 days in hydroponic culture at a photon flux density (PFD) of 200 µmol/(m2·s). During the first 30 days of cultivation, the nutrient solution was bubbled with air that saturates the medium with oxygen to a concentration of about 8 mg/L. On the 31st day of cultivation, aeration of the nutrient medium in the experimental variant was stopped, after that hypoxia spontaneously occurred in the solution approximately 8—12 hours later, and the oxygen content decreased to < 1.5 mg/L. It was shown that root hypoxia caused a significant decrease in the leaves pigments content: chlorophyll (Chl) a — by 25 %, Chl b  — by 15 %, carotenoids — by 17 %, while the ratio Chl a/b in the experimental variant decreased to 2.55 compared to the control (2.94), which indicates an increase in the relative content of Chl b under stress conditions. To assess the functional state of photosynthetic apparatus, the maximum quantum yield (Fv/Fm), the quantum yield of photosystem II (PSII) photochemistry at the light-adapted state (F'v/F'm) and the real quantum yield of electron transport (jPSII) were determined, as well as levels of photochemical (qP) and non-photochemical (qN, NPQ) fluorescence quenching. Values of stationary fluorescence (Fs), normalized to dark-adapted basal values (Fo), were used as an indicator of the root hypoxia effect on the stomatal conductance of spinach leaves. It is shown that the consequence of the stress caused by the lack of oxygen in the root zone is a decrease in the maximum quantum yield, as well as the F'v/F'm and jФСII parameters at a low PFD of actinic light. No significant differences in the qP, qN, NPQ and Fs/F0 parameters between the control and experimental variants were found at the PFD of actinic light of 200, 600 and 1000 µmol/(m2 · s). The obtained data indicate that moderate hypoxia stress in hydroponic culture of spinach leads to a decrease in the content of pigments and partial damage to the photosynthetic apparatus.

Keywords: Spinacia oleracea, hydroponics, photosynthesis, root hypoxia, chlorophyll, carotenoids, chlorophyll fluorescence

Fiziol. rast. genet.
2023, vol. 55, no. 2, 150-162

Full text and supplemented materials

Free full text: PDF  

References

1.   Lee, B.S., So, H.M., Kim, S., Kim, J.K., Kim, J.C., Kang, D.M., Ahn, M.J., Ko, Y.J. & Kim, K.H. (2022). Comparative evaluation of bioactive phytochemicals in Spinacia oleracea cultivated under greenhouse and open field conditions. Arch. Pharm. Res., 45, pp. 795-805. https://doi.org/10.1007/s12272-022-01416-z

 2. https://scienceagri.com/10-worlds-biggest-producers-of-spinach/

 3. Bergman, M., Varshavsky, L., Gottlieb, H.E. & Grossman, S. (2001). The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemistry, 58, pp. 143-152. https://doi.org/10.1016/S0031-9422(01)00137-6

 4. Roberts, J.L. & Moreau, R. (2016). Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food funct., 7 (8), pp. 3337-3353. https://doi.org/ 10.1039/c6fo00051g

 5. https://www.healthline.com/nutrition/foods/spinach

 6. Chu, Y.F., Sun, J., Wu, X. & Liu, R.H. (2002). Antioxidant and antiproliferative activities of common vegetables. J. Agric. Food Chem., 50 (23), pp. 6910-6916. https://doi.org/10.1021/jf020665f

 7. Ferreres, F., CastaФer, M. & Tom«s-Barber«n, F.A. (1997) Acylated flavonol glycosides from spinach leaves (Spinacia oleracea). Phytochemistry 45 (8), pp. 1701-1705. https://doi.org/10.1016/S0031-9422(97)00244-6

 8. Edenharder, R., Keller, G., Platt, K.L. & Unger, K.K. (2001) Isolation and characterization of structurally novel antimutagenic flavonoids from spinach (Spinacia oleracea). J. Agric. Food Chem., 49 (6), pp. 2767-2773. https://doi.org/10.1021/jf0013712

 9. Lomnitski, L., Bergman, M., Nyska, A., Ben-Shaul, V. & Grossman, S. (2009). Composition, efficacy, and safety of spinach extracts. Nutrition and cancer, 46 (2), pp. 222-231. https://doi.org/10.1207/S15327914NC4602_16

10. Bergquist, S.A.M., Gertsson, U.E., Knuthsen, P. & Olsson, M.E (2005). Flavonoids in baby spinach (Spinacia oleracea L.): changes during plant growth and storage. J. Agric. Food Chem., 53 (24), pp. 9459-9464. https://doi.org/10.1021/jf051430h

11. Pandjaitan, N., Howard, L.R, Morelock, T. & Gil, M.I. (2005). Antioxidant capacity and phenolic content of spinach as afected by genetics and maturation. J. Agric. Food Chem., 53 (22), pp. 8618-8623. https://doi.org/10.1021/jf052077i

12. Heo, J.C., Park, C.H., Lee, H.J., Kim, S.O., Kim, T.H. & Lee, S.H. (2010). Amelioration of asthmatic inflammation by an aqueous extract of Spinacia oleracea Linn. Int. J. Mol. Med., 25 (3), pp. 409-414. https://doi.org/10. 3892/ijmm_00000359

13. Singh, J., Jayaprakasha, G.K. & Patil, B.S. (2018). Extraction, identification, and potential health benefits of spinach flavonoids: A review. Advances in Plant Phenolics: From Chemistry to Human Health, pp. 107-136. http://10.1021/bk-2018-1286.ch006

14. Hait-Darshan, R., Grossman, S., Bergman, M., Deutsch, M. & Zurgil, N. (2009). Synergistic activity between a spinach-derived natural antioxidant (NAO) and commercial antioxidants in a variety of oxidation systems.Food Res. International, 42 (2), pp. 246-253. https://doi.org/10.1016/j.foodres.2008.11.006

15. Lomnitski, L., Carbonatto, M., Ben-Shaul, V., Peano, S., Conz, A., Corradin, L., Maronpot, R.R., Grossman, S. & Nyska, A. (2000). The prophylactic effects of natural water-soluble antioxidant from spinach and apocynin in a rabbit model of lipopolysaccharide-induced endotoxemia. Toxicologic pathology, 28 (4), pp. 588-600. https://doi.org/10.1177/019262330002800413

16. Shafique, F., Naureen, U., Zikrea, A., Akhter, S., Rafique, T., Sadiq, R., Naseer, M., Akram, Q. & Ali, Q. (2021). Antibacterial and antifungal activity of plant extracts from Spinacia oleraceae L. (Amaranthaceae). Journal of Pharmaceutical Research International, 33 (22B), pp. 94-100. https://doi.org/10.9734/JPRI/2021/v33i22B31410

17. Akula, R. & Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6 (11), pp. 1720-1731. https://doi.org/10.4161/psb.6.11.17613

18. Das, K. & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci., 2, pp. 1-13. https://doi.org/10.3389/fenvs.2014.00053

19. Fornaciari, S., Milano, F., Mussi, F., Pinto-Sanchez, L., Forti, L., Buschini, A. & Arru, L. (2015). Assessment of antioxidant and antiproliferative properties of spinach plants grown under low oxygen availability. Journal of the Science of Food and Agriculture, 95 (3), pp. 490-496. https://doi.org/10.1002/jsfa.6756

20. Milano, F., Mussi, F., Fornaciari, S., Altunoz, M., Forti, L., Arru, L. & Buschini, A. (2019). Oxygen availability during growth modulates the phytochemical profile and the chemo-protective properties of spinach juice. Biomolecules, 9 (2); pp. 1-10. https://doi.org/10.3390/biom9020053

21. Colmer, T. D. & Greenway, H. (2011). Ion transport in seminal and adventitious roots of cereals during O2 deficiency. Journal of Experimental Botany, 62 (1), pp. 39-57. https://doi.org/10.1093/jxb/erq271

22. Armstrong, W. (1980). Aeration in higher plants. Advances in Botanical Research, 7, pp. 225-332. https://doi.org/10.1016/S0065-2296(08)60089-0

23. Crawford, R.M.M. & Braendle, R. (1996). Oxygen deprivation stress in a changing environment. Journal of Experimental Botany, 47 (2), pp.145-159. https://doi.org/10.1093/ jxb/47.2.145

24. Blokhina, O., Virolainen, E. & Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 91 (2), pp. 179-194. https://doi.org/10.1093/aob/mcf118

25. Blokhina, O. & Fagerstedt, K.V. (2010). Oxygen deprivation, metabolic adaptations and oxidative stress. Waterlogging Signalling and Tolerance in Plants, pp. 119-147. https://doi.org/10.1007/978-3-642-10305-6_7

26. Atwell, B.J., Greenway, H. & Colmer, T.D. (2015). Efficient use of energy in anoxia-tolerant plants with focus on germinating rice seedlings. New Phytologist, 206 (1), pp. 36-56. https://doi.org/10.1111/nph.13173

27. LeЩn, J., Castillo, M.C. & Gayubas, B. (2021). The hypoxia-reoxygenation stress in plants. Journal of Experimental Botany, 72 (16), pp. 5841-5856. https://doi.org/ 10.1093/jxb/eraa591

28. Aroca, R., Porcel, R. & Ruiz-Lozano, J.M. (2012). Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany, 63 (1), pp. 43-57. https://doi.org/10.1093/jxb/err266

29. Limami, A. M., Diab, H. & Lothier, J. (2014). Nitrogen metabolism in plants under low oxygen stress. Planta, 239, pp. 531-541. https://doi.org/10.1007/s00425-013-2015-9

30. Butcher, J.D., Laubscher, C.P. & Coetzee, J.C. (2017). A study of oxygenation techniques and the chlorophyll responses of Pelargonium tomentosum grown in deep water culture hydroponics. HortScience, 52 (7), pp. 952-957. https://www.cabdirect.org/cabdirect/abstract/20173304519

31. Goto, K., Yabuta, S., Tamaru, S., Ssenyonga, P., Emanuel, B., Katsuhama, N. & Sakagami, J.I. (2022). Root hypoxia causes oxidative damage on photosynthetic apparatus and interacts with light stress to trigger abscission of lower position leaves in Capsicum. Scientia Horticulturae, 305, 111337. https://doi.org/10.1016/j.scienta.2022.111337

32. Velasco, N.F., Ligarreto, G.A., DНaz, H.R. & Fonseca, L.P.M. (2019). Photosynthetic responses and tolerance to root-zone hypoxia stress of five bean cultivars (Phaseolus vulgaris L.). South African Journal of Botany, 123, pp. 200-207. https://doi.org/10.1016/ j.sajb.2019.02.010

33. Morimoto, T., Masuda, T. & NoNami, H. (1989). Oxygen enrichment in deep hydroponic culture improves growth of spinach. Environment Control in Biology, 27 (3), pp. 97-102. https://doi.org/10.2525/ecb1963.27.97

34. Gavrylenko, V.F. & Zhygalova, Т.V. (2003). Great practicum on photosynthesis. Moscow: Academia [ in Russian].

35. Lichtenthaler, H.K. & Buschmann, C. (2001). Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. In: Current Protocols in Food Analytical Chemistry. Eds R.E. Wrolstad, T.E. Acree, H. An, E.A. Decker, M.H. Penner, D.S. Reid, S.J. Schwartz, C.F.Shoemaker, P. Sporns. New York: John Wiley & Sons, Inc., 2001, pp. F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913. faf0403s01.

36. van Kooten, O. & Snel, J.F.H. (1990). The use of chlorophyll uorescence nomenclature in plant stress physiology. Photosynthesis Research, 25 (3), pp. 147-150. https://doi.org/ 10.1007/BF00033156

37. Marini, R.P. (1986). Do net gas exchange rates of green and red peach leaves differ? HortScience, 21 (1), pp. 118-120. https://doi.org/10.21273/HORTSCI.21.1.118

38. Grichko, V.P. & Glick, B.R. (2001). Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol. Biochem., 39 (1), pp. 11-17. https://doi.org/10.1016/S0981-9428(00)01212-2

39. Rao, R. & Li, Y. (2003). Management of flooding effects on growth of vegetable and selected field crops. HortTechnology, 13, pp. 610-616. https://doi.org/10.21273/HORTTECH.13.4.0610

40. Kumar, P., Pal, M., Joshi, R. & Sairam, R.K. (2013). Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage. Physiology and Molecular Biology of Plants, 19, pp. 209-220. https://doi.org/10.1007/s12298-012-0153-3

41. FlЩrez-Velasco, N., Balaguera-LЩpez, H.E. & Restrepo-DНaz, H. (2015). Effects of foliar urea application on lulo (Solanum quitoense cv. septentrionale) plants grown under different waterlogging and nitrogen conditions. Scientia Horticulturae, 186, pp. 154-162. https://doi.org/10.1016/j.scienta.2015.02.021

42. Otero, A. & GoФi, C. (2017). Short hypoxia period affects photosynthesis of citrus scion leaves under different rootstocks. Citrus Research & Technology, 37 (1), pp. 19-25. https://doi.org/10.4322/crt.ICC110

43. Habibi, F., Liu, T., Shahid, M.A., Schaffer, B. & Sarkhosh, A. (2023). Physiological, biochemical, and molecular responses of fruit trees to root zone hypoxia. Environmental and Experimental Botany, 206. https://doi.org/10.1016/j.envexpbot.2022.105179

44. Greenway, H. & Gibbs, J. (2003). Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Functional Plant Biology, 30 (10), pp. 999-1036. https://doi.org/10.1071/pp98096

45. Komatsu, S., Yamamoto, A., Nakamura, T., Nouri, M.Z., Nanjo, Y., Nishizawa, K. & Furukawa, K. (2011). Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. Journal of Proteome Research, 10 (9), pp. 3993-4004. https://doi.org/10.1021/pr2001918

46. Khanna-Chopra, R. (2012). Leaf senescence and abiotic stresses share reactive oxygen species-mediated chloroplast degradation. Protoplasma, 249, pp. 469-481. https://doi.org/ 10.1007/s00709-011-0308-z

47. Yadav, D.K. & Hemantaranjan, A. (2017). Mitigating effects of paclobutrazol on flooding stress damage by shifting biochemical and antioxidant defense mechanisms in mungbean (Vigna radiata L.) at pre-flowering stage. Legume Res. Int. J., 40 (3), pp. 453-461. https://doi.org/10.18805/lr.v0i0.7593

48. Su, Q., Sun, Z., Liu, Y., Lei, J., Zhu, W. & Nanyan, L. (2022). Physiological and comparative transcriptome analysis of the response and adaptation mechanism of the photosynthetic function of mulberry (Morus alba L) leaves to flooding stress. Plant Signaling and Behavior, 17 (1). https://doi.org/10.1080/15592324.2022.2094619

49. Syvash O.O., Mykhaylenko N.F. & Zolotareva E.K. (2018). Variation of chlorophyll a to b ratio at adaptation of plants to external factors Bull. Kharkiv Nat. Agrar. Univ. Ser. Biol., 3 (45), pp. 49-73. https://doi.org/10.35550/vbio2018.03.049

50. Syvash, O.O. & Zolotareva, O.K. (2017). Regulation of chlorophyll degradation in plant tissues. Biotechnologia Acta, 10 (3), pp. 20-30. https://doi.org/10.15407/ biotech10.03.020

51. Maxwell, K. & Johnson, G.N. (2000). Chlorophyll fluorescence-a practical guide. J. Exp. Bot., 51, pp. 659-668. https://doi.org/10.1093/jexbot/51.345.659

52. Goltsev, V.N., Kalaji, M.H., Kouzmanova, M.A. & Allakhverdiev, S.I. (2014). Variable and Delayed Chlorophyll a Fluorescence — Basics and Application in Plant Sciences. Moscow, Izshevsk: Institute of Computer Sciences, 220.

53. Ezin, V., Pena, R.D.L. & Ahanchede, A. (2011). Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Brazilian J. Plant Physiol., 22 (2), pp. 131-142. https://doi.org/10.1590/S1677-04202010000200007

54. Zeng, N., Yang, Z., Zhang, Z., Hu, L. & Chen, L. (2019). Comparative transcriptome combined with proteome analyses revealed key factors involved in Alfalfa (Medicago sativa) response to waterlogging stress. Int. J. Mol. Sci., 20 (6), p. 1359. https://doi.org/ 10.3390/Fijms20061359

55. Flexas, J., Escalona, J.M., Evain, S., GulНas, J., Moya, I., Osmond, C.B. & Medrano, H. (2002). Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiologia plantarum, 114 (2), pp. 231-240. https://doi.org/10.1034/j.1399-3054.2002.1140209.x