Fiziol. rast. genet. 2023, vol. 55, no. 2, 142-149, doi: https://doi.org/10.15407/frg2023.02.142

Identification of lpa mutations in barley grains using molecular markers

Katrii V.B.1, Velykozhon L.G.1,2, Slyvka L.V.1, Rybalka O.I.1,3, Morgun B.V.1,2

  1. Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine  31/17 Vasylkivska St., Kyiv, 03022, Ukraine
  2. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine  148 Akademika Zabolotnoho St., 03143, Кyiv, Ukraine
  3. lant Breeding and Genetics Institute—National Centre of Seed and Cultivars Investigation, National Academy of Agricultural Sciences of Ukraine 3 Ovidiopolska Road, Odesa, 65036, Ukraine

Phosphorus contained in cereal grains is by 65—85 % in the form of phytic acid and its salts. Mutations in lpa genes lead to a decrease in the content of myo-inositol-1,2,3,4,5,6-hexakisphosphates in seeds, that play in favor of the assimilation of mineral elements (phosphorus, iron, zinc and others) by the human organism. That why it is so important to identify in barley (Hordeum vulgare L.) breeding lines lpa mutations that affect the level of phytates accumulation in grain. For this aim, we used DNA isolation method (CTAB method), DNA electrophoresis in agarose gel, and polymerase chain reaction (PCR). Developed marker systems for identification of lpa1-1 and lpa2-1 mutations allowed efficient analysis of breeding material. In total, 30 samples with lpa1-1 and 36— with lpa2-1 mutations were identified among the 82 breeding lines. The applied method of detecton lpa1-1 and lpa2-1 mutations, which affect the content of phytates in barley grains, allowed us to find promising genotypes, which will be used in future crossings.

Keywords: Hordeum vulgare L., barley, lpa mutations, phytic acid, phosphates, marker-assisted selection

Fiziol. rast. genet.
2023, vol. 55, no. 2, 142-149

Full text and supplemented materials

Free full text: PDF  

References

1. Arumuganathan, K. & Earle, E.D. (1991). Nuclear DNA content of some important plant species. Plant Mol. Biol., 9, pp. 208-218. https://doi.org/10.1007/BF02672069

2. Derdanier, C., Dwyer, J. & Herber, D. (2013). Handbook of nutrition and food (3rd ed.). CRC Press, p. 199. ISBN 978-1-4665-0572-8.

3. Raboy, V. (2001). Seeds for a better future: 'low phytate', grains help to overcome malnutrition and reduce pollution. Trends Plant Sci., 6, pр. 458-462. https://doi.org/10.1016/S1360-1385(01)02104-5

4. Dorsch., J.A, Cook, A., Young, K.A, Anderson, J.M., Bauman, A.T., Volkmann, C.J., Murthy P.P.N. & Raboy, V. (2003). Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry, 62, рр. 691-706. https://doi.org/10.1016/S0031-9422(02)00610-6

5. Oliver, R.E., Yang, C., Hu, G., Raboy, V. & Zhang, M. (2009). Identification of PCR-based DNA markers flanking three low phytic acid mutant loci in barley. J. Plant Breed. Crop Sci., 1, рр. 87-93. https://doi.org/10.5897/JPBCS.9000081xxx1

6. Larson, S.R., Young, K.A., Coo, K.A., Blake, T.K. & Raboy, V. (1998). Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theor. Appl. Genet., 97, рр. 141-146. https://doi.org/10.1007/s001220050878

7. Kim, S.I., Andaya, C.B., Goyal, S.S. & Tai, T.H. (2008). The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor. Appl. Genet. 117, рр. 769-779. https://doi.org/10.1007/s00122-008-0818-z

8. Liu, Q.L., Xu, X.H., Ren, X.L., Fu, H.W., Wu, D.X. & Shu, Q.Y. (2007). Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor. Appl. Genet., 114, рр. 803-814. https://doi.org/10.1007/s00122-006-0478-9

9. Zhao, H.J., Liu, Q.L., Fu, H.W., Xu, X.H., Wu, D.X. & Shu, Q.Y. (2008). Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice. Field Crops Res., 108, рр. 206-211, https://doi.org/10.1016/j.fcr.2008.05.006

10. Guttieri, M., Bowen, D., Dorsch, J.A., Raboy, V. & Souza, E. (2003). Identification and characterization of a low phytic acid wheat. Crop Sci., 44, рр. 418-424. https://doi.org/10.2135/cropsci2004.4180

11. Shi, J.R., Wang, H.Y., Wu, Y.S., Hazebroek, J., Meeley, R.B. & Ertl, D.S. (2003). The maize low-phytic acid mutant 1pa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol., 131, рр. 507-515. https://doi.org/10.1104/pp.014258

12. Shi, J.R., Wang H.Y., Hazebroek, J., Ertl, D.S. & Harp, T. (2005). The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J., 42, рр. 708-719. https://doi.org/10.1111/j.1365-313X.2005.02412.x

13. Shi, J.R., Wang, H.Y., Schellin, K., Li, B.L., Faller, M., Stoop, J.M., Meeley, R.B., Ertl, D.S., Ranch, J.P. & Glassman, K. (2007). Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol., 25, рр. 930-937. https://doi.org/10.1038/nbt1322

14. Hitz, W.D., Carlson, T.J., Kerr, P.S. & Sebastian, S.A. (2002). Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol., 128, рр. 650-660. https://doi.org/10.1104/pp.010585

15. Yuan, F.J., Zhao, H.J., Ren, X.L., Zhu, S.L., Fu, X.J. & Shu, Q.Y. (2007). Generation and characterization of two novel low phytate mutations in soybean (Glycine max (L.) Merr.). Theor. Appl. Genet., 115, рр. 945-957. https://doi.org/10.1007/s00122-007-0621-2

16. Campion, B., Sparvoli, F., Doria, E., Tagliabue, G., Galasso, I., Fileppi, M., Bollini, R. & Nielsen, E. (2009). Isolation and characterisation of an lpa (low phytic acid) mutant in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet., 118., рр. 1211-1221. https://doi.org/10.1111/j.1439-0523.2008.01569.x

17. Brody, J.R. & Kern, S.E. (2004). History and principles of conductive media for standard DNA electrophoresis. Anal. Biochem., 333, рр. 1-13. https://doi.org/10.1016/j.ab.2004.05.054

18. Soma, M. (2006). Extraction and purification of DNA. Session 4. In: Training Course on the Analysis of Food Samples for the Presence of Genetically Modified Organisms. User Manual. Edited by Querci M., Jermini M., Van den Eede G. European Commission, DJ joint Research Centre, Institute for Health and Consumer Protection: Luxembourg. р. 229.

19. Godwin, I.D., Aitken, E.A.B. & Smith, L.W. (1997). Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis. 18, No. 9, pр. 1524-1528. https://doi.org/10.1002/elps.1150180906

20. Raboy, V. (2002). Progress in breeding low phytate crops. J. Nutr., 132, pp. 503-505. https://doi.org/10.1093/jn/132.3.503S

21. Raboy, V., Young, K., Dorsch, J. & Cook, A. (2001). Genetics and breeding of seed phosphorus and phytic acid. J. Plant Physiol., 158, pp. 489-497. https://doi.org/10.1078/0176-1617-00361

22. Rybalka, O.I., Schwartau, V.V., Polishchuk, S.S. & Morgun, B.V. (2019). Reduction of phytate content as a means of barley biofortification on grain mineral composition. Fiziol. rast. genet., 51, No. 2, pp. 95-113. https://doi.org/10.15407/frg2019.02.095

23. Bregitzer, Ph., Hu, G., Marshall, J. & Raboy, V. (2017). Registration of "Sawtooth" lowphytate, hulless, spring barley. J. Plant Reg., 11, рр. 81-84. https://doi.org/10.3198/jpr2016.09.0049crc