Fiziol. rast. genet. 2021, vol. 53, no. 6, 484-500, doi: https://doi.org/10.15407/frg2021.06.484

Strategies for increasing alphatocopherol content in plants

Mokrosnop V.M., Zolotareva E.K.

  • M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereshchenkivska St., Kyiv, 01004, Ukraine

The main ways of obtaining a-tocopherol (a-T) is through chemical synthesis and the extraction of a-T from plant oils. A widely used synthetic form called all-rac-a-tocopherol consists of mixing eight stereoisomers with part of natural stereoisomer RRR-a-tocopherol only 12.5 %. Natural a-T is 1.5 times more active than synthetic forms, that is why the search for effective sources of natural a-T continues. Plant oils such as sunflower, maize, rapeseed and soybean are the main sources of natural commercial vitamin E with low activity due to low level of a-T content in seed oils. Much research has been done that shows stimulating of a-T production in plant cells by changing cultivation conditions, including light intensity, photoperiod, nitrogen level, temperature, and type of carbon nutrition etc. Stress conditions all stimulate the accumulation of antioxidants in the photosynthetic organisms, but can also restrict their normal growth rate. Gene engineering allows for the creation of plants with high a-T content by introducing the coding sequences (CDS) of significant genes of tocochromanol synthetic pathway into a nuclear genome of transgenic plants. cDNA with CDS of key enzymes of the a-T synthesis, such as homogentisate geranylgeranyl transferase (HGGT), tocopherol cyclase (TC), g-tocopherol methyltransferase (g-MTM) from rice, soybean, maize, carrot etc., are used to enhance the total tocochromanol content and improve tocopherols composition. Application of the combination of biotechnology techniques, genetic engineering and optimization of cultivation conditions, greatly stimulates the accumulation of a-T in photosynthetic organisms.

Keywords: a-tocopherol, vitamin E, tocochromanol, biotechnology, transgenic plants

Fiziol. rast. genet.
2021, vol. 53, no. 6, 484-500

Full text and supplemented materials

Free full text: PDF  

References

1. Valentin, H.E. & Qi, Q. (2005). Biotechnological production and application of vitamin E: current state and prospects. Appl. Microbiol. Biotechnol., 68 (4), pp. 436-444. https://doi.org/10.1007/s00253-005-0017-7

2. Mokrosnop, V.M. & Zolotareva, O.K. (2021). Conditions for the accumulation of a-tocopherol in microalgae cells. Microbiol. and Biotechnol., 2 (52), pp. 6-26. https://doi.org/10.18524/2307-4663.2021.2(52).223991

3. Van Eenennaam, A.L., Lincoln, K., Durrett, T.P., Valentin, H.E., Shewmaker, C.K., Thorne, G.M. & Last, R.L. (2003). Engineering vitamin E content: from Arabidopsis mutant to soy oil. The Plant Cell, 15 (12), pp. 3007-3019. https://doi.org/10.1105/tpc.015875

4. Wang, X.Q., Yoon, M.Y., He, Q., Kim, T.S., Tong, W., Choi, B.W., Lee, Y.-S. & Park, Y.J. (2015). Natural variations in OsgTMT contribute to diversity of the a-tocopherol content in rice. Molecular Genetics and Genomics, 290 (6), pp. 2121-2135. https://doi.org/10.1007/s00438-015-1059-x

5. Rocheford, T.R., Wong, J.C., Egesel, C.O. & Lambert, R.J. (2002). Enhancement of vitamin E levels in corn. J. of the American College of Nutrition, 21 (sup3), pp. 191S-198S. https://doi.org/10.1080/07315724.2002.10719265

6. Rippert, P., Scimemi, C., Dubald, M. & Matringe, M. (2004). Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance. Plant Physiol., 134 (1), pp. 92-100. https://doi.org/10.1104/pp.103.032441

7. Yuan, P., Cui, S., Liu, Y., Li, J., Du, G. & Liu, L. (2020). Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Appl. Microbiol. Biotechnol., 104 (3), pp. 935-51. https://doi.org/10.1007/s00253-019-10157-x

8. Li, Y., Wang, Z., Sun, X. & Tang, K. (2008). Current opinions on the functions of tocopherol based on the genetic manipulation of tocopherol biosynthesis in plants. J. of Integrative Plant Biol., 50 (9), pp. 1057-1069. https://doi.org/10.1111/j.1744-7909.2008.00689.x

9. Almeida, J., Quadrana, L., Asis, R., Setta, N., de Godoy, F., Bermudez, L. & Rossi, M. (2011). Genetic dissection of vitamin E biosynthesis in tomato. J. of Exp. Bot., 62 (11), pp. 3781-3798. https://doi.org/10.1093/jxb/err055

10. Fritsche, S., Wang, X. & Jung, C. (2017). Recent advances in our understanding of tocopherol biosynthesis in plants: an overview of key genes, functions, and breeding of vitamin E improved crops. Antioxidants, 6 (4), p. 99. https://doi.org/10.3390/antiox6040099

11. Falk, J., Andersen, G., Kernebeck, B. & Krupinska, K. (2003). Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. FEBS Letters, 540 (1-3), pp. 35-40. https://doi.org/10.1016/S0014-5793(03)00166-2

12. Seo, Y.S., Kim, S.J., Harn, C.H. & Kim, W.T. (2011). Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanum lycopersicum cv. Micro-Tom) leaves and fruits. Phytochemistry, 72 (4-5), pp. 321-329. https://doi.org/10.1016/j.phytochem.2010.12.013

13. Tavva, V.S., Kim, Y.H., Kagan, I.A., Dinkins, R.D., Kim, K.N. & Collins, G.B. (2007). Increased a-tocopherol content in soybean seed overexpressing the Perilla frutescens g-tocopherol methyltransferase gene. Plant Cell Reports, 26 (1), pp. 61-70. https://doi.org/10.1007/s00299-006-0218-2

14. Tsegaye, Y., Shintani, D.K. & DellaPenna, D. (2002). Overexpression of the enzyme p-hydroxyphenolpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol. Biochem., 40 (11), pp. 913-920. https://doi.org/10.1016/S0981-9428(02)01461-4

15. Collakova, E. & DellaPenna, D. (2003). The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol., 133 (2), pp. 930-940. https://doi.org/10.1104/pp.103.026138

16. Karunanandaa, B., Qi, Q., Hao, M., Baszis, S.R., Jensen, P.K., Wong, Y. H.H. & Valentin, H.E. (2005). Metabolically engineered oilseed crops with enhanced seed tocopherol. Metabolic Engineering, 7 (5-6), pp. 384-400. https://doi.org/10.1016/j.ymben.2005.05.005

17. DellaPenna, D. & Pogson, B.J. (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol., 57, pp. 711-738. https://doi.org/10.1146/annurev.arplant.56.032604.144301

18. Harish, M.C., Dachinamoorthy, P., Balamurugan, S., Murugan, S.B. & Sathishkumar, R. (2013). Enhancement of a-tocopherol content through transgenic and cell suspension culture systems in tobacco. Acta Physiol. Plant., 35 (4), pp. 1121-1130. https://doi.org/10.1007/s11738-012-1149-x

19. Kim, S.E., Lee, C.J., Ji, C.Y., Kim, H.S., Park, S.U., Lim, Y.H. & Kwak, S.S. (2019). Transgenic sweetpotato plants overexpressing tocopherol cyclase display enhanced a-tocopherol content and abiotic stress tolerance. Plant Physiol. Biochem., 144, pp. 436-444. https://doi.org/10.1016/j.plaphy.2019.09.046

20. Li, Y., Zhou, Y., Wang, Z., Sun, X. & Tang, K. (2010). Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. Plant Sci., 178 (3), pp. 312-220. https://doi.org/10.1016/j.plantsci.2010.01.004

21. Ma, J., Qiu, D., Pang, Y., Gao, H., Wang, X. & Qin, Y. (2020). Diverse roles of tocopherols in response to abiotic and biotic stresses and strategies for genetic biofortification in plants. Mol. Breed., 40 (2), pp. 1-15. https://doi.org/10.1007/s11032-019-1097-x

22. Shintani, D. & DellaPenna, D. (1998). Elevating the vitamin E content of plants through metabolic engineering. Science, 282 (5396), pp. 2098-2100. https://doi.org/10.1126/science.282.5396.2098

23. Lee, B.K., Kim, S.L., Kim, K.H., Yu, S.H., Lee, S.C., Zhang, Z. & Lee, J.Y. (2008). Seed specific expression of perilla g-tocopherol methyltransferase gene increases a-tocopherol content in transgenic perilla (Perilla frutescens). Plant Cell, Tissue and Organ Culture, 92 (1), pp. 47-54. https://doi.org/10.1007/s11240-007-9301-9

24. Zhang, L., Luo, Y., Liu, B., Zhang, L., Zhang, W., Chen, R. & Wang, L. (2020). Overexpression of the maize g-tocopherol methyltransferase gene (ZmTMT) increases a-tocopherol content in transgenic Arabidopsis and maize seeds. Transgen. Res., 29 (1), pp. 95-104. https://doi.org/10.1007/s11248-019-00180-z

25. Wang, H., Xu, S., Fan, Y., Liu, N., Zhan, W., Liu, H. & Yan, J. (2018). Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol. J., 16 (8), pp. 1464-1475. https://doi.org/10.1111/pbi.12889

26. Li, Q., Yang, X., Xu, S., Cai, Y., Zhang, D., Han, Y. & Yan, J. (2012). Genome-wide association studies identified three independent polymorphisms associated with a-tocopherol content in maize kernels. PlOS One, 7 (5), e36807. https://doi.org/10.1371/journal.pone.0036807

27. Baseggio, M., Murray, M., Magallanes-Lundback, M., Kaczmar, N., Chamness, J., Buckler, E.S. & Gore, M.A. (2019). Genome-wide association and genomic prediction models of tocochromanols in fresh sweet corn kernels. The Plant Genome, 12 (1), 180038. https://doi.org/10.3835/plantgenome2018.06.0038

28. Park, C., Dwiyanti, M.S., Nagano, A.J., Liu, B., Yamada, T. & Abe, J. (2019). Identification of quantitative trait loci for increased a-tocopherol biosynthesis in wild soybean using a high-density genetic map. BMC Plant Biol., 19 (1), pp. 1-15. https://doi.org/10.1186/s12870-019-2117-z

29. ‡amagajevac, I.ћ., Pfeiffer, T.¦. & Maroniє, D.ћ. (2018). Abiotic stress response in plants: the relevance of tocopherols. In Antioxidants and antioxidant enzymes in higher plants (pp. 233-251). Springer, Cham. https://doi.org/10.1007/978-3-319-75088-0_11

30. Hasanuzzaman, M., Nahar, K. & Fujita, M. (2014). Role of tocopherol (vitamin E) in plants: abiotic stress tolerance and beyond. In Emerging technologies and management of crop stress tolerance (pp. 267-289). Academic Press. https://doi.org/10.1016/B978-0-12-800875-1.00012-0

31. Foyer, C.H. & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell, 17 (7), pp. 1866-1875. https://doi.org/10.1105/tpc.105.033589

32. Munne-Bosch, S. (2005). The role of a-tocopherol in plant stress tolerance. J. Plant Physiol., 162 (7), pp. 743-748. https://doi.org/10.1016/j.jplph.2005.04.022

33. SzymaXska, R., Slesak, I., Orzechowska, A. & Kruk, J. (2017). Physiological and 1biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot., 139, pp. 165-177. https://doi.org/10.1016/j.envexpbot.2017.05.002

34. Farooq, M., Aziz, T., Wahid, A., Lee, D.J. & Siddique, K.H. (2009). Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci., 60 (6), pp. 501-516. https://doi.org/10.1071/CP08427

35. Liu, X. & Huang, B. (2000). Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci., 40 (2), pp. 503-10. https://doi.org/10.2135/cropsci2000.402503x

36. Sadiq, M., Akram, N. A., Ashraf, M., Al-Qurainy, F. & Ahmad, P. (2019). Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. J. Plant Growth Regul., 38 (4), pp. 1325-1340. https://doi.org/10.1007/s00344-019-09936-7

37. Carrera, C.S. & Seguin, P. (2016). Factors affecting tocopherol concentrations in soybean seeds. J. Agric. Food Chem., 64 (50), pp. 9465-9474. https://doi.org/10.1021/acs.jafc.6b03902

38. Szarka, A., Tomasskovics, B. & Banhegyi, G. (2012). The ascorbate-glutathione-a-tocopherol triad in abiotic stress response. Int. J. Mol. Sci., 13 (4), pp. 4458-4483. https://doi.org/10.3390/ijms13044458

39. Spicher, L., Glauser, G. & Kessler, F. (2016). Lipid antioxidant and galactolipid remodeling under temperature stress in tomato plants. Front. Plant Sci., 7, pp. 167. https://doi.org/10.3389/fpls.2016.00167

40. Sattler, S.E., Gilliland, L.U., Magallanes-Lundback, M., Pollard, M. & DellaPenna, D. (2004). Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. The Plant Cell, 16 (6), pp. 1419-1432. https://doi.org/10.1105/tpc.021360

41. Dong, G., Liu, X., Chen, Z., Pan, W., Li, H. & Liu, G. (2007). The dynamics of tocopherol and the effect of high temperature in developing sunflower (Helianthus annuus L.) embryo. Food Chem., 102 (1), pp. 138-145. https://doi.org/10.1016/j.foodchem.2006.05.013

42. Tang, Y.L., Ren, W.W., Zhang, L. & Tang, K.X. (2011). Molecular cloning and characterization of a tocopherol cyclase gene from Lactuca sativa (Asteraceae). Genet. Mol. Biol., 10 (2), pp. 693-702. https://doi.org/10.4238/vol10-2gmr1061

43. Kumar, S., Singh, R. & Nayyar, H. (2013). a-Tocopherol application modulates the response of wheat (Triticum aestivum L.) seedlings to elevated temperatures by mitigation of stress injury and enhancement of antioxidants. J. Plant Growth Regul., 32 (2), pp. 307-314. https://doi.org/10.1007/s00344-012-9299-z

44. Maeda, H. & DellaPenna, D. (2007). Tocopherol functions in photosynthetic organisms. Curr.Opin. Plant Biol., 10 (3), pp. 260-265. https://doi.org/10.1016/j.pbi.2007.04.006

45. Matringe, M., Ksas, B., Rey, P. & Havaux, M. (2008). Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves. Plant Physiol., 147 (2), pp. 764-778. https://doi.org/10.1104/pp.108.117614

46. Mokrosnop, V.M. (2014). Functions of tocopherols in the cells of plants and other photosynthetic organisms. Ukr. Biochem. J., 86 (5), pp. 26-36. https://doi.org/10.15407/ubj86.05.026

47. Yamaguchi-Shinozaki, K. & Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 6 (2), pp. 251-264. https://doi.org/10.1105/tpc.6.2.251

48. Bafeel, S.O. & Ibrahim, M.M. (2008). Antioxidants and accumulation of a-tocopherol induce chilling tolerance in Medicago sativa. Int. J. Agric. Biol, 10 (6), pp. 593-598.

49. Falk, J. & Munne-Bosch, S. (2010). Tocochromanol functions in plants: antioxidation and beyond. J. Exp. Bot., 61 (6), pp. 1549-1566. https://doi.org/10.1093/jxb/erq030

50. Havaux, M., Eymery, F., Porfirova, S., Rey, P. & Dormann, P. (2005). Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. The Plant Cell, 17 (12), pp. 3451 - 3469. https://doi.org/10.1105/tpc.105.037036

51. Xiang, N., Li, C., Li, G., Yu, Y., Hu, J. & Guo, X. (2019). Comparative evaluation on vitamin E and carotenoid accumulation in sweet corn (Zea mays L.) seedlings under temperature stress. J. Agric. Food Chem., 67 (35), pp. 9772-9781. https://doi.org/10.1021/acs.jafc.9b04452

52. Mokrosnop, V.M., Polishchuk, A.V. & Zolotareva, E.K. (2016). Accumulation of a-tocopherol and b-carotene in Euglena gracilis cells under autotrophic and mixotrophic culture conditions. Appl. Biochem. Microbiol., 52 (2), pp. 216-221. https://doi.org/10.1134/S0003683816020101

53. Trebst, A., Depka, B. & Hollander-Czytko, H. (2002). A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett., 516 (1-3), pp. 156-160. https://doi.org/10.1016/S0014-5793(02)02526-7

54. SzymaXska, R. & Kruk, J. (2010). Plastoquinol is the main prenyllipid synthesized during acclimation to high light conditions in Arabidopsis and is converted to plastochromanol by tocopherol cyclase. Plant Cell Physiol., 51 (4), pp. 537-545. https://doi.org/10.1093/pcp/pcq017

55. Zhang, H., Vasanthan, T. & Wettasinghe, M. (2007). Enrichment of tocopherols and phytosterols in canola oil during seed germination. J. Agric. Food Chem., 55, pp. 355-359. https://doi.org/10.1021/jf060940o

56. Tanaka, R., Oster, U., Kruse, E., Rudiger, W. & Grimm, B. (1999). Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol., 120, pp. 695-704. https://doi.org/10.1104/pp.120.3.695

57. Leipner, J., Fracheboud, Y. & Stamp, P. (1997). Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves. Plant, Cell, Environment, 20 (3), pp. 366-372. https://doi.org/10.1046/j.1365-3040.1997.d01-76.x

58. Lushchak, V.I. & Semchuk, N.M. (2012). Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiol. Plant., 34 (5), pp. 1607-1628. https://doi.org/10.1007/s11738-012-0988-9

59. Munne-Bosch, S. & Alegre, L. (2002). Plant aging increases oxidative stress in chloroplasts. Planta, 214 (4), pp. 608-615. https://doi.org/10.1007/s004250100646

60. Mokrosnop, V.M. & Zolotareva, E.K. (2014). Microalgae as tocopherol producers. Biotechnologia, 7 (2), pp. 26-33. https://doi.org/10.15407/biotech7.02.026

61. Sandorf, I. & Hollander-Czytko, H. (2002). Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. Planta, 216 (1), pp. 173-179. https://doi.org/10.1007/s00425-002-0888-0

62. Liu, X., Hua, X., Guo, J., Qi, D., Wang, L., Liu, Z. & Liu, G. (2008). Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotechnol. Lett., 30 (7), pp. 1275-1280. https://doi.org/10.1007/s10529-008-9672-y

63. Munne-Bosch, S., Schwarz, K. & Alegre, L. (1999). Enhanced formation of a-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol., 121, pp. 1047-1052. https://doi.org/10.1104/pp.121.3.1047

64. Espinoza, A., San Martin, A., Lopez-Climent, M., Ruiz-Lara, S., Gomez-Cadenas, A. & Casaretto, J.A. (2013). Engineered drought-induced biosynthesis of a-tocopherol alleviates stress-induced leaf damage in tobacco. J. Plant Physiol., 170, pp. 1285-1294. https://doi.org/10.1016/j.jplph.2013.04.004

65. Rao, S.R. & Ravishankar, G.A. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnol. Adv., 20 (2), pp. 101-153. https://doi.org/10.1016/S0734-9750(02)00007-1

66. Espinosa-Leal, C.A., Puente-Garza, C.A. & Garcia-Lara, S. (2018). In vitro plant tissue culture: means for production of biological active compounds. Planta, 248 (1), pp. 1-18. https://doi.org/10.1007/s00425-018-2910-1

67. Georgiev, M.I., Weber, J. & Maciuk, A. (2009). Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl. Microbiol. Biotechnol., 83 (5), pp. 809-823. https://doi.org/10.1007/s00253-009-2049-x

68. Gala, R., Mita, G. & Caretto, S. (2005). Improving a-tocopherol production in plant cell cultures. J. Plant Physiol., 162 (7), pp. 782-784. https://doi.org/10.1016/j.jplph.2005.04.010

69. Caretto, S., Speth, E.B., Fachechi, C., Gala, R., Zacheo, G. & Giovinazzo, G. (2004). Enhancement of vitamin E production in sunflower cell cultures. Plant Cell Rep., 23 (3), pp. 174-179. https://doi.org/10.1007/s00299-004-0799-6

70. Chavan, S.P., Lokhande, V.H., Nitnaware, K.M. & Nikam, T.D. (2011). Influence of growth regulators and elicitors on cell growth and a-tocopherol and pigment productions in cell cultures of Carthamus tinctorius L. Appl. Microbiol. Biotechnol., 89 (6), pp. 1701-1707. https://doi.org/10.1007/s00253-010-3014-4

71. Furuya, T., Yoshikawa, T., Kimura, T. & Kaneko, H. (1987). Production of tocopherols by cell culture of safflower. Phytochemistry, 26 (10), pp. 2741-2747. https://doi.org/10.1016/S0031-9422(00)83582-7

72. Badrhadad, A., Piri, K. & Ghiasvand, T. (2013). Increase alpha-tocopherol in cell suspension cultures Elaeagnus angustifolia L. Int. J. Agri. Crop Sci., pp. 1328-1331.

73. Antognoni, F., Faudale, M., Poli, F. & Biondi, S. (2009). Methyl jasmonate differentially affects tocopherol content and tyrosine amino transferase activity in cultured cells of Amaranthus caudatus and Chenopodium quinoa. Plant Biol., 11, pp. 161-169. https://doi.org/10.1111/j.1438-8677.2008.00110.x

74. Fachechi, C., Nisi, R., Gala, R., Leone, A. & Caretto, S. (2007). Tocopherol biosynthesis is enhanced in photomixotrophic sunflower cell cultures. Plant Cell Rep., 26, pp. 525-530. https://doi.org/10.1007/s00299-006-0268-5

75. Caretto, S., Nisi, R., Paradiso, A. & De Gara, L. (2010). Tocopherol production in plant cell cultures. Mol. Nutr. Food Res., 54 (5), pp. 726-730. https://doi.org/10.1002/mnfr.200900397

76. Geipel, K., Song, X., Socher, M.L., Kummritz, S., Puschel, J., Bley, T. & Steingroewer, J. (2014). Induction of a photomixotrophic plant cell culture of Helianthus annuus and optimization of culture conditions for improved a-tocopherol production. Appl. Microbiol. Biotechnol., 98 (5), pp. 2029-2040. https://doi.org/10.1007/s00253-013-5431-7

77. Hellmann, H. A. & Smeekens, S. (2014). Sugar sensing and signaling in plants. Frontiers in Plant Science, 5, p. 113. https://doi.org/10.3389/fpls.2014.00113

78. Sege№ov«, A., ‡ervenъ, J. & Roitsch, T. (2018). Advancement of the cultivation and upscaling of photoautotrophic suspension cultures using Chenopodium rubrum as a case study. Plant Cell, Tissue and Organ Culture, 135 (1), pp. 37-51. https://doi.org/10.1007/s11240-018-1441-6

79. Srinivasan, A., Vijayakumar S., Karthik R. & Srivastava, S. (2019). Rational metabolic engineering for enhanced alpha-tocopherol production in Helianthus annuus cell culture. Biochem. Engineer. J., 151, p. 107256. https://doi.org/10.1016/j.bej.2019.107256