Fiziol. rast. genet. 2021, vol. 53, no. 5, 415-424, doi: https://doi.org/10.15407/frg2021.05.415

Transient expression of uida and gfp genes in Physalis peruviana

Yaroshko O.M., Matvieieva N.A., Kuchuk M.V.

  • Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Akademika Zabolotnoho St., Kyiv, 03143, Ukraine

Physalis peruviana is a plant species which finds its application in agriculture and food industry due to the synthesis of numerous compounds such as fisagulins, fisalingulinides, visangulatine, fisalins. In recent years the properties of Physalis were improved with genetic engineering methods. We studied the possibility of transient expression of genes in P. peruviana plants using the Agrobacterium rhizogenes and A. tumefaciens. The intact plants were cultivated in greenhouse (22—26 °С, 14-hour light photoperiod, 3000—4500 lx) before transformation. A. rhizogenes A4 carrying pICH5290 or pCB131 vector and A. tumefaciens with pICBV19 vector were used for obtaining plants with transiently expressed reporter uidA and gfp genes. Also we additionally used A. tumefaciens GV3101 strain with pICH6692 genetic vector with gene coding the P19 protein (the suppressor of gene silencing). The pICH5290 genetic vector contained bar and gfp genes; the pCB131 genetic vector contained the bar, gfp and fbpB (DTMD) — gene, coding Ag85B of Mycobacterium tuberculosis. The pCBV19 genetic vector contained uidA and bar genes. Transient expression of uidA and gfp genes was confirmed in adult plants after conduction of vacuum infiltration with the bacteria. Maximum of gfp expression was observed between the 5th and 12th days after the transformation. The most intensive expression of the gfp and uidA genes was detected in the upper leaves (2nd—3rd) of young plants. There was no significant difference in gene expression levels in case of using agrobacteria with or without the genetic vector which carried out the gene silencing suppressor.

Keywords: Physalis peruviana L., Agrobacterium, transformation, transient expression, uidA, gfp gene

Fiziol. rast. genet.
2021, vol. 53, no. 5, 415-424

Full text and supplemented materials

Free full text: PDF  

References

1. Ramadan, M.F. (2011). Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): an overview. Food Research International., 44 (7), pp. 1830-1836. https://doi.org/10.1016/j.foodres.2010.12.042

2. Strik, B.C. (2007). Berry crops: worldwide area and production systems. In Berry fruit value-added products for health promotion, 1st ed. (pp. 3-48), Boca Raton: CRC Press. https://doi.org/10.1201/9781420006148

3. Franco, L.A., Matiz, G.E., Calle, J., Pinzon, R. & Ospina, L.F. (2007). Antiinflammatory activity of extracts and fractions obtained from Physalis peruviana L. calyces, Strik, Bernadine C. Berry crops: worldwide area and production systems, Biomedica: revista del Instituto Nacional de Salud, 27 (1), pp. 110-115. https://doi.org/10.7705/biomedica.v27i1.237

4. Wu, S.-J., Ng, L.T., Huang, Y.M., Lin, D.L., Wang, S.S., Huang, S.N. & Lin, C.C. (2005). Antioxidant activities of Physalis Peruviana. Biological & Pharmaceutical Bulletin, 28 (6), pp. 963-966. https://doi.org/10.1248/bpb.28.963

5. Reddy, C.K., Sreeramulu, D. & Raghunath, M. (2010). Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Research International, 43 (1), pp. 285-288. https://doi.org/10.1016/j.foodres.2009.10.006

6. Su, B.-N., Misico, M., Park, E.J., Santarsiero, B.D., Mesecar, A.D., Fong, H.S. Pezzuto, J.M. & Kinghorn, A.D. (2002). Isolation and characterization of bioactive principles of the leaves and stems of Physalis philadelphica. Tetrahedron, 58 (17), pp. 3453-3466. https://doi.org/10.1016/S0040-4020(02)00277-6

7. Szeto, Y.T., Tomlinson, B. & Benzie, I.F.F. (2002). Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation. British Journal of Nutrition, 87 (1), pp. 55-59. https://doi.org/10.1079/BJN2001483

8. Soares, M.B.P., Brustolim D., Santos, L.A., Bellintani, M.C., Paiva, F.P., Ribeiro, Y.M., Tomassini, T.C. & Dos Santos, R.R. (2006). Physalins B, F and G seco-steroids purified from Physalis angulata L., inhibit lymphocyte function and allogeneic transplant rejection. International Immunopharmacology, 6 (3), pp. 408-414. https://doi.org/10.1016/j.intimp.2005.09.007

9. Pietro, R.C., Kashima, S., Sato, D.N., Januario, A.H. & Franca, S.C. (2000). In vitro antimycobacterial activities of Physalis angulata L. Phytomedicine, 7 (4), pp. 335-338. https://doi.org/10.1016/S0944-7113(00)80052-5

10. Soares, M.B.P., Bellintani, M.C., Ribeiro, I.M., Therezinha, C.B.Tomassini T.C.B. & dos Santos, R.R. (2003). Inhibition of macrophage activation and lipopolysaccaride-induced death by seco-steroids purified from Physalis angulata L. European Journal of Pharmacology, 459 (1), pp. 107-112. https://doi.org/10.1016/S0014-2999(02)02829-7

11. Wu, Sh.-J., Chang, Sh.-P., Lin, D.-L., Wang, Sh.-Sh., Hou, F.-F. & Ng, L.T. (2009). Supercritical carbon dioxide extract of Physalis peruviana induced cell cycle arrest and apoptosis in human lung cancer H661 cells. Food and Chemical Toxicology, 47 (6), pp. 1132-1138. https://doi.org/10.1016/j.fct.2009.01.044

12. Wick, W., Grimmel, C., Wagenknecht, B., Dichgans, J. & Weller, J.M. (1999). Betulinic acid-induced apoptosis in glioma cells: a sequential requirement for new protein synthesis, formation of reactive oxygen species, and caspase processing. Journal of Pharmacology and Experimental Therapeutics, 289 (3), pp. 1306-1312.

13. Tan, Y., Yu, R. & Pezzuto J.M. (2003). Betulinic acid-induced programmed cell death in human melanoma cells involves mitogen-activated protein kinase activation. Clinical Cancer Research, 9 (7), pp. 2866-2875.

14. Selzer, E., Pimentel, E., Wacheck, V., Schlegel, W., Pehamberger, H., Jansen, B. & Kodym, R. (2000). Effects of betulinic acid alone and in combination with irradiation in human melanoma cells. Journal of Investigative Dermatology, 114 (5), pp. 935-940. https://doi.org/10.1046/j.1523-1747.2000.00972.x

15. Fulda, S., Scaffidi, C., Susin, S.A., Krammer, P.H., Kroemer, G., Peter, M.E. & Debatin, K.M. (1998). Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid. Journal of Biological Chemistry, 273 (51), pp. 33942-33948. https://doi.org/10.1074/jbc.273.51.33942

16. Sawada, N., Kataoka, K., Kondo, K., Arimochi, H., Fujino, H., Takahashi, Y., Miyoshi, T., Kuwahara, T., Monden, Y. & Ohnishi, Y. (2004). Betulinic acid augments the inhibitory effects of vincristine on growth and lung metastasis of B16F10 melanoma cells in mice. British Journal of Cancer, 90 (8), pp. 1672-1678. https://doi.org/10.1038/sj.bjc.6601746

17. Bergier, K., Kuzniak, E. & Sklodowska, M. (2012). Antioxidant potential of Agrobacterium-transformed and non-transformed Physalis ixocarpa plants grown in vitro and ex vitro. Postepy Higieny i Medycyny Doswiadczalnej, 66, pp. 976-982. https://doi.org/10.5604/17322693.1023086

18. Assad-Garcia, N., Ochoa-Alejo, N., Garcia-Hernandez, E., Herrera-Estrella, L. & Simpson, J. (1992). Agrobacterium-mediated transformation of tomatillo (Physalis ixocarpa) and tissue specific and developmental expression of the camv 35S promoter in transgenic tomatillo plants. Plant Cell Reports, 11 (11), pp. 558-562. https://doi.org/10.1007/BF00233092

19. Swartwood, K. & Van Eck, J. (2019). Development of plant regeneration and Agrobacterium tumefaciens-mediated transformation methodology for Physalis pruinosa. Plant Cell, Tissue and Organ Culture (PCTOC), 137 (3), pp. 465-472. https://doi.org/10.1007/s11240-019-01582-x

20. Hu, X.W., Wu, Ya.P., Ding, X.Y, Zhang, R., Wang, Y.R., Baskin, J.M., Carol, C. & Baskin, C.C. (2014). Seed dormancy, seedling establishment and dynamics of the soil seed bank of Stipa bungeana (Poaceae) on the loess plateau of northwestern China. Plos ONE 9 (11), e112579. https://doi.org/10.1371/journal.pone.0112579

21. Zhatova, H.O. (2010). Zahalne nasinnieznavstvo. Universytetska Knyha: Sumy [in Ukrainian].

22. Pospielov, S.V. (2013). Vplyv prostorovoho rozmishchennia simianok ekhinatsei na yikh prorostannia. Materialy druhoi mizhnarodnoi naukovo-praktychnoi internet-konferentsii likarske roslynnytstvo: vid dosvidu mynuloho do novitnikh tekhnolohii, pp. 71-73. Poltava: Poltavska Derzhavna Ahrarna Akademia [in Ukrainian].

23. Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15 (3), pp. 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

24. Yaroshko, O., Morgun, B., Velykozhon, L.G., Gajdosova, A., Andrushenko, O.L. & Kuchuk, M.V. (2020). PCR analyses of first-generation plants of Amaranthus caudatus L. after «floral-dip» genetic transformation. Fiziol. rast. genet., 52, No. 2, pp. 128-139. https://doi.org/10.15407/frg2020.02.128

25. Yaroshko, O., Vasylenko, M., Gajdosova, A., Morgun, B., Khrystan, O., Velykozhon, L. & Kuchuk, M. (2019). «Floral-dip» transformation of Amaranthus caudatus L. and hybrids A. caudatus w A. paniculatus L. Biologija, 64 (4), pp. 321-330. https://doi.org/10.6001/biologija.v64i4.3904

26. Yaroshko, O. & Kuchuk, M. (2018). Agrobacterium - caused transformation of cultivars Amaranthus caudatus L. and hybrids of A. caudatus L. w A. paniculatus L. International Journal of Secondary Metabolite, 5 (4), pp. 312-318. https://doi.org/10.21448/ijsm.478267

27. Bertani, G. (1951). Studies on lysogenesis. Journal of Bacteriology, 62 (3), pp. 293-300. https://doi.org/10.1128/jb.62.3.293-300.1951

28. Luria, S.E., Adams, J.N. & Ting, R.C. (1960). Transduction of lactose-utilizing ability among strains of E. coli and S. dysenteriae and the properties of the transducing phage particles. Virology, 12(3), pp. 348-390. https://doi.org/10.1016/0042-6822(60)90161-6

29. Jefferson, R.A. (1987). Assaying chimeric genes in plants: The uidA gene fusion system. Plant Molecular Biology Reporter, 5 (4), pp. 387-405. https://doi.org/10.1007/BF02667740

30. Yamamoto, T., Hoshikawa, K., Ezura, K., Okazawa, R., Fujita, S., Takaoka, M., Mason, H.S., Ezura, H. & Miura, K. (2018). Improvement of the transient expression system for production of recombinant proteins in plants. Scientific Reports, 8 (1). https://doi.org/10.1038/s41598-018-23024-y

31. Wydro, M., Kozubek, E. & Lehmann, P. (2006). Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochimica Polonica, 53 (2), pp. 289-298. https://doi.org/10.18388/abp.2006_3341

32. Sheludko, Y.V., Sindarovska, Y.R., Gerasimenko, I.M., Bannikova, M.O., Olevinska, Z.M., Spivak, M.Ya. & Kuchuk, M.V. (2006). Agrobacterium-mediated transient expression: a perspective approach for high-scale production of recombinant proteins in plants. Nauka ta Innovacii, 2 (6), pp. 65-76. https://doi.org/10.15407/scin2.06.065

33. Sheludko, Y.V., Sindarovska, Y.R., Gerasymenko, I.M., Bannikova, M.A. & Kuchuk, N.V. (2006). Comparison of several Nicotiana species as hosts for high-scale Agrobacterium-mediated transient expression. Biotechnology and Bioengineering, 96 (3), pp. 608-614. https://doi.org/10.1002/bit.21075

34. Voinnet, O., Rivas, S., Mestre, P. & Baulcombeet, D. (2003). Retracted: an enhanced transient expression system in plants based on suppression of gene silencing by the P19 protein of tomato bushy stunt virus. The Plant Journal, 33 (5), pp. 949-956. https://doi.org/10.1046/j.1365-313X.2003.01676.x

35. Wroblewski, T., Tomczak, A. & Michelmoreet, R. (2005). Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnology Journal, 3 (2), pp. 259-273. https://doi.org/10.1111/j.1467-7652.2005.00123.x

36. Shah, K.H, Almaghrabi, B. & Bohlmann, H. (2013). Comparison of expression vectors for transient expression of recombinant proteins in plants. Plant Molecular Biology Reporter, 31 (6), pp. 1529-1538. https://doi.org/10.1007/s11105-013-0614-z