The latest literature data on bacterial signaling molecules acyl-homoserine lactones (AHLs) role in regulation of plant growth and development, and enhancing of stress resistance to biotic and abiotic stressors are reviewed. AHLs synchronize individual cellular genomes, provide remote signaling between bacteria-colonizers of the phytosphere, which allows the population to respond to external signaling and establish a symbiotic or antagonistic relationship with the host plant. AHLs regulation of rhizosphere functions, the most dynamic site of plant and associated microflora interaction, is especially important in the development of new biotechnological approaches aimed at increasing yields and stress resistance of crops. Recent studies have shown direct (plant-specific) and indirect (rhizosphere microflora-specific) effects of AHLs. It has been proved that AHL-priming induces an intensification of plant growth, an increase in the content of photosynthetic pigments, changes in the balance of endogenous phytohormones, affects the protective mechanisms formation, changes the architecture of roots, influences stomatal conductance, and callose deposition. Since AHLs comply intensive organic farming, they are regarded as promising biostimulants and phytomodulators that can improve the quantity and quality of crop plants production.
Keywords: acyl homoserine lactones, quorum sensing, AHL-signaling, priming, resistance, biotechnology
Full text and supplemented materials
Free full text: PDFReferences
1. Janni, M., Gulli, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H.T. & Marmiroli, N. (2020). Molecular and genetic bases of heat responses in crop plants and breeding for increased resilience and productivity. Exp. Bot., 71, No. 13, pp. 3780-3802. https://doi.org/10.1093/jxb/eraa034
2. Lorenz, R., Stalhandske, Z. & Fischer, E.M. (2019). Detection of a climate change signal in extreme heat, heat stress, and cold in Europe from observations. Geophys. Res. Lett., 46, pp. 8363-8374. https://doi.org/10.1029/2019GL082062
3. Wahid, A., Gelani, S., Ashraf, M. & Foolad, M.R. (2007). Heat tolerance in plants: An overview. Environ. Exp. Bot., 61, pp. 199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011
4. Hsu, J.S., Powell, J. & Adler, P.B. (2012). Sensitivity of mean annual primary production to precipitation. Global Change Biol., 18, No. 7, pp. 2246-2255. https://doi.org/10.1111/j.1365-2486.2012.02687.x
5. Morgun, V.V. & Kiriziy, D.A. (2012). Prospects and modern strategies of wheat physiological traits improvement for increasing productivity. Fiziologia i biokhimiya kult. rastenij, 44, No. 6, pp. 463-483 [in Ukrainian].
6. Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G.P.S., Handa, N., Kohli, S.K., Yadav, P., Bali, A.S., Parihar, R.D., Dar, O.I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R. & Thukral, A.K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci., 1, p. 1446. https://doi.org/10.1007/s42452-019-1485-1
7. Stamenkovic, S., Beskoski, V., Karabegovic, I., Lazic, M. & Nikolic, N. (2018). Microbial fertilizers: a comprehensive review of current findings and future perspectives. Span J. Agric. Res., 16, No. 1, e09R01. https://doi.org/10.5424/sjar/2018161-12117
8. Gupta, G., Kumar, A. & Verma, N. (2019). Bacterial homoserine lactones as nanocomposite fertilizer and defense regulator for chickpeas. Environ. Sci. Nano, 6, No. 4, pp. 1-20. https://doi.org/10.1039/C9EN00199A
9. Moshynets, O.V., Babenko, L.M., Rogalsky, S.P., Iungin, O.S., Foster, J., Kosakivska, I.V., Potters, G. & Spiers, A.J. (2019). Priming winter wheat seeds with thebacterial quorum sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield. PLoS One, 14, No. 2, e0209460. https://doi.org/10.1371/journal.pone.0209460
10. Babenko, L.M., Romanenko, K.O., Iungin, O.S. & Kosakivska, I.V. (2021). Acyl homoserine lactones for crop production and stress tolerance of agricultural plants. Sel'skokhozyaistvennaya Biologiya [Agricultural Biology], 56, No. 1, pp. 3-19. https://doi.org/10.15389/agrobiology.2021.1.3eng
11. Tsygankova, V., Shysha, E., Andrusevich, Y., Galkin, A., Iutynska, G., Yemets, A. & Blume, Y. (2016). Using of new microbial biostimulants for obtaining in vitro new lines of Triticum aestivum L. cells resistant to nematode H. avenae. Eur. J. Biotec. Biosci., 4, No. 4, pp. 41-53.
12. Shrestha, A., Grimm, M., Ojiro, I., Krumwiede, J. & Schikora, A. (2020). Impact of quorum sensing molecules on plant growth and immune system. Front Microbiol., 11, pp. 1-11. https://doi.org/10.3389/fmicb.2020.01545
13. Palmer, A.G., Senechal, A.C., Mukherjee, A., Ane, J.-M. & Blackwell, H.E. (2014). Plant responses to bacterial N-acyl-L-homoserine lactones are dependent on enzymatic degradation to L-homoserine. ACS Chem. Biol., 9, pp.1834-1845. https://doi.org/10.1021/cb500191a
14. Sarkar, R., Mondal, S., Vera, R., Chakraborty, S., Varik, R., Roy, P., Kumar, A., Yadav, K.K., Choudhury, J., Chaudhary, S.K., Samanta, S.K., Karmakar, S., Das, S., Mukherjee, R.K., Mukherjee, J. & Sen, T. (2015). Antimicrobial properties of Kalanchoe biossfeldiana: a focus on drug resistance with particular reference to quorum sensing-mediated bacterial biofilm formation. J. Pharm. Pharmacol., 67, No. 7, pp. 951-962. https://doi.org/10.1111/jphp.12397
15. Moshynets, O.V. & Kosakivska, I.V. (2010). Phytosphere ecology: plant-microbial interactions. 1. structure functional characteristic of rhizo-, endo- and phyllosphere. Visn. Hark. nac. agrar. univ., Ser. Biol., 2, No. 20, pp. 19-35 [in Ukrainian].
16. Babenko, L.M., Moshynets, O.V., Shcherbatiuk, M.M. & Kosakivska, I.V. Bacterial acyl homoserine lactones in plant priming biotechnology: achievements and prospects of use in agricultural production. Fiziol. rast. genet., 48, No. 6, pp. 463-474 [in Ukrainian]. https://doi.org/10.15407/frg2016.06.463
17. Lareen, A., Burton, F. & Schafer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol., 90, No. 6, pp. 575-587. https://doi.org/10.1007/s11103-015-0417-8
18. Shrestha, A. & Schikora, A. (2020). AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiol Ecol., 96, 12, pp. 226. https://doi.org/10.1093/femsec/fiaa226
19. Ding, L., Cao, J., Duan, Y., Li, J., Yang, Y., Yang, G. & Zhou, Y. (2016). Proteomic and physiological responses of Arabidopsis thaliana exposed to salinity stress and N-acyl-homoserine lactone. Physiol. Plant. 158, pp. 414-434. https://doi.org/10.1111/ppl.12476
20. Schikora, A., Schenk, S.T. & Hartmann, A. (2016). Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol. Biol., 90, pp. 605-612. https://doi.org/10.1007/s11103-016-0457-8
21. Babenko, L.M., Moshynets, O.V., Rogalsky, S.P., Shcherbatiuk, N.N., Suslova, O.S. & Kosakivska, I.V. (2017). Effects of presowing N-hexanoyl-L-homoserine lactone priming on formation of rhizosphere microflora and harvest structure of Triticum aestivum L. Visn. Hark. nac. agrar. univ., Ser. Biol., 1, pp. 106-118 [in Russian]. https://doi.org/10.35550/vbio2017.01.106
22. Basu, S., Rabara, R. & Negi, S. (2017). Towards a better greener future - an alternative strategy using biofertilizers. I: Plant growth promoting bacteria. Plant Gene, 12, pp. 43-49. https://doi.org/10.1016/j.plgene.2017.07.004
23. Kosakivska, I.V., Babenko, L.M., Romanenko, K.O. & Futorna, O.A. (2020). Effects of exogenous bacterial quorum sensing signal molecule (messenger) N-hexanoyl-L-homoserine lactone (C6-HSL) on morphological and physiological responses of winter wheat under simulated acid rain. Dopov. Nac. Akad. nauk Ukr., 8, pp. 92-100. https://doi.org/10.15407/dopovidi2020.08.092
24. Pomini, A.M., Araujo, W.L. & Marsaioli, A.J. (2006). Structural elucidation and biological activity of acyl-homoserine lactones from the phytopathogen Pantoea ananatis Serrano 1928. J. Chem. Ecol., 32 pp. 1769-1778. https://doi.org/10.1007/s10886-006-9108-x
25. Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano - Anolles, G., Rolfe, B.G. & Bauer, W.D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci USA, 100, No. 3, pp. 1444-1449. https://doi.org/10.1073/pnas.262672599
26. Miao, C., Liu, F., Zhao, Q., Jia, Z. & Song, S. (2012). A proteomic analysis of Arabidopsis thaliana seedling responses to 3-oxo-octanoyl-homoserine lactone, a bacterial quorum-sensing signal. Biochem. Biophys. Res. Commun., 427, No. 2, pp. 293-298. https://doi.org/10.1016/j.bbrc.2012.09.044
27. Song, S., Jia, Z., Xu, J., Zhang, Z. & Bian, Z. (2011). N-butyryl-homoserine lactone, a bacterial quorum-sensing signaling molecule, induces intracellular calcium elevation in Arabidopsis root cells. Biochem. Biophys. Res. Commun., 414, No. 2, pp. 355-360. https://doi.org/10.1016/j.bbrc.2011.09.076
28. von Rad, U., Klein, I., Dobrev, P.I., Kottova, J., Zazimalova, E., Fekete, A., Hartmann, A., Schmitt-Kopplin, P. & Durner, J. (2008). Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta, 229, No. 1, pp. 73-85. https://doi.org/10.1007/s00425-008-0811-4
29. Liu, F., Bian, Z., Jia, Z., Zhao, Q. & Song, S. (2012). The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. Mol. Plant-Microbe Interact., 25, No. 5, pp. 677-683. https://doi.org/10.1094/MPMI-10-11-0274
30. Sieper, T., Forczek, S., Matucha, M., Kramer, P., Hartmann, A. & Schroder, P. (2014). N-acyl-homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant. New Phytol., 201, No. 2, pp. 545-555. https://doi.org/10.1111/nph.12519
31. Ortiz-Castro, R.A., Martinez-Trujillo, M.I. & Lypez-Bucio, J.O. (2008). N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ., 31, No. 10 pp. 1497-1509. https://doi.org/10.1111/j.1365-3040.2008.01863.x
32. Schenk, S.T., Stein, E., Kogel, K.H. & Schikora, A. (2012). Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behav., 7, pp. 178-181. https://doi.org/10.4161/psb.18789
33. Shrestha, A., Elhady, A., Adss, S., Wehner, G., Bottcher, C. & Heuer, H. (2019). Genetic differences in barley govern the responsiveness to N-acyl-homoserine lactone. Phytobiomes J., 3, pp. 191-202. https://doi.org/10.1094/PBIOMES-03-19-0015-R
34. Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E.V.L., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst, T. & Schulze-Lefert, P. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488, No. 7409, pp. 91-95. https://doi.org/10.1038/nature11336
35. Jiang, J., Wu, S., Wang, J. & Feng, Y. (2015). AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. J. Basic Microbiol., 55, pp. 607-616. https://doi.org/10.1002/jobm.201400472
36. Conrath, U., Pieterse, C.M. & Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends Plant Sci., 7, No. 5, pp. 210-216. https://doi.org/10.1016/S1360-1385(02)02244-6
37. Schenk, S.T., Hernandez-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., Reichelt, M., Mithofer, A., Becker, A., Kogel, K.-H. & Schikora, A. (2014). N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell, 26, No. 6, pp. 2708-2723. https://doi.org/10.1105/tpc.114.126763
38. Srivastava, A.K., Kumar, J.S. & Suprasanna, P. (2021). Seed 'primeomics': plants memorize their germination under stress. Biol. Rev., 96, No. 5, pp. 1723-1743. https://doi.org/10.1111/brv.12722
39. Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C.M.J., Pozo, M.J., Ton, J., van Dam, N.M. & Conrath, U. (2016). Recognizing plant defense priming. Trends Plant Sci., 21, pp. 818-822. https://doi.org/10.1016/j.tplants.2016.07.009
40. Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. (2017). Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol., 68, pp. 485-512. https://doi.org/10.1146/annurev-arplant-042916-041132
41. Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M.N., Metraux, J.-P. & Mauch-Mani, B. (2005). Dissecting the beta-aminobutyric acid induced priming phenomenon in Arabidopsis. Plant Cell, 17, pp. 987-999. https://doi.org/10.1105/tpc.104.029728
42. Beckers, G.J., Jaskiewicz, M. & Liu, Y. (2009). Mitogen-activated protein kinases 3 and 63 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell, 21, pp. 944-953. https://doi.org/10.1105/tpc.108.062158
43. Jaskiewicz, M., Conrath, U. & Peterhansel, C. (2011). Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep., 12, No. 1, pp. 50-55. https://doi.org/10.1038/embor.2010.186
44. Luna, E., Bruce, T.J., Roberts, M.R., Flors, V. & Ton, J. (2012). Next-generation systemic acquired resistance. Plant Physiol., 158, pp. 844-853. https://doi.org/10.1104/pp.111.187468
45. Rasmann, S., De Vos, M., Casteel, C.L., Tian, D., Halitschke, R., Sun, J.Y., Agrawal, A.A., Felton, G.W. & Jander, G. (2012). Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol., 158, pp. 854-863. https://doi.org/10.1104/pp.111.187831
46. Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B. & MauchMani, B. (2012). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol., 158, pp. 835-843. https://doi.org/10.1104/pp.111.191593
47. Elshakh, A.S.A., Anjum, S.I., Qiu, W., Almoneafy, A.A., Li, W., Yang, Z., Cui, Z.-Q., Li, B., Sun, G.-C. & Xie, G.-L. (2016). Controlling and defence-related mechanisms of Bacillus strains against bacterial leaf blight of rice. J. Phytopathol., 164, No. 7-8, pp. 534-546. https://doi.org/10.1111/jph.12479
48. Babenko, L.M., Shcherbatiuk, M.M. & Kosakivska, I.V. (2021, July). Effects of pre-sawing treatment with DL-N-hexanoil-L-homoserine lactone on physiological and biochemical characteristics of winter wheat. Challenges, threats and developments in biology, agriculture, ecology, geography, geology and chemistry: International scientific conference (pp. 29-33), Lublin: Publishing House «Baltija Publishing». https://doi.org/10.30525/978-9934-26-111-4-6
49. Slewinski, T.L. (2012). Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production. J. Exp. Bot., 63, No. 13, pp. 4647-4670. https://doi.org/10.1093/jxb/ers124
50. Babenko, L.M., Smirnov, O.E., Romanenko, K.O., Trunova, O. K. & Kosakivska, I.V. (2019). Phenolic compounds in plants: biogenesis and functions. Ukr. Biochem J., 91, No. 3, pp. 5-18. https://doi.org/10.15407/ubj91.03.005
51. Zhao, Q., Li, M., Jia, Z., Liu, F., Ma, H., Huang, Y. & Song, S. (2016). AtMYB44 positively regulates the enhanced elongation of primary roots induced by N-3-oxo-hexanoyl-homoserine lactone in Arabidopsis thaliana. Mol. Plant-Microbe Interact., 29, No. 10, pp. 774-785. https://doi.org/10.1094/MPMI-03-16-0063-R
52. Pang, Y., Liu, X., Ma, Y., Chernin, L., Berg, G. & Gao, K. (2008). Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl-homoserine lactones. Eur. J. Plant Pathol., 124, No. 2, pp. 261-268. https://doi.org/10.1007/s10658-008-9411-1
53. Timmusk, S., Grantcharova, N. & Wagner, E.G.H. (2005). Paenibacillus polymyxa invades plant roots and forms biofilms. Appl. Environ. Microbiol., 71, No. 11, pp. 7292-7300. https://doi.org/10.1128/AEM.71.11.7292-7300.2005
54. Gahoi, P., Omar, R.A., Verma, N. & Gupta, G.S. (2021). Rhizobacteria and acylated homoserine lactone-based nanobiofertilizer to improve growth and pathogen defense in Cicer arietinum and Triticum aestivum plants. ACS Agric. Sci. Technol., 1, No. 3, pp. 240-252. https://doi.org/10.1021/acsagscitech.1c00039
55. Wehner, G., Schikora, A., Ordon, F. & Will, F. (2021). Priming negatively affects feeding behavior and aphid biomass of Rhopalosiphum padi on barley. J. Pest Sci., 94, pp. 1237-1247. https://doi.org/10.1007/s10340-021-01329-8
56. Upadhyay, S.K., Singh, J.S., Saxena, A.K. & Singh, D.P. (2012). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol., 14, No. 4, pp. 605-611. https://doi.org/10.1111/j.1438-8677.2011.00533.x
57. Wehner, G., Kopalmke, D., Richter, K., Kecke, S., Schikora, A. & Ordon, F. (2019). Priming is a suitable strategy to enhance resistance towards leaf rust in barley. Phytobiomes J., 3, No. 1, pp. 2471-2906. https://doi.org/10.1094/PBIOMES-09-18-0041-R
58. Hartmann, A., Klink, S. & Rothballer, M. (2021). Plant growth promotion and induction of systemic tolerance to drought and salt stress of plants by quorum sensing auto-inducers of the N-acyl-homoserine lactone type: recent developments. Front. Plant Sci., 12, p. 683546. https://doi.org/10.3389/fpls.2021.683546
59. Khan, M., Bhargava, P. & Goel, R. (2019). Quorum sensing molecules of Rhizobacteria: a trigger for developing systemic resistance in plants. In: Sayyed, R., Arora, N. & Reddy, M. (Eds.) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management. Microorganisms for Sustainability (pp. 117-138), Singapore: Springer. https://doi.org/10.1007/978-981-13-6536-2_7
60. Ostapchuk, M.O., Polyshchuk, Y.S., Mazur, A.V. & Palamarchuk, V.D. (2016). Using of biological products - perspective direction of improvement agrotechnologies. Agriculture and Forestry, 3, pp. 32-43 [in Ukrainian].
61. Barriuso, J., Ramos Solano, B., Fray, R.G., Camara, M., Hartmann, A. & Manero, F.J.G. (2008). Transgenic tomato plants alter quorum sensing in plant growth-promoting rhizobacteria. Plant Biotechnol. J., 6, pp. 442-452. https://doi.org/10.1111/j.1467-7652.2008.00331.x
62. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., van Breusegem, F., Ebarl, L., Hartmann, A. & Langebartels, C. (2006). Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ., 29, pp. 909-918. https://doi.org/10.1111/j.1365-3040.2005.01471.x
63. Pazarlar, S., Cetinkaya, N., Bor, M. & Kara, R.S. (2020). N-acyl homoserine lactone-mediated modulation of plant growth and defense against Pseudoperonospora cubensis in cucumber. J. Exp. Bot., 71, No. 20, pp. 6638-6654. https://doi.org/10.1093/jxb/eraa384
64. Rankl, S., Gunse, B., Sieper, T., Schmid, C., Poschenrieder, C. & Schroder, P. (2016). Microbial homoserine lactones (AHLs) are effectors of root morphological changes in barley. Plant Sci., 253, pp. 130-140. https://doi.org/10.1016/j.plantsci.2016.09.014
65. Gotz, C., Fekete, A., Gebefuegi, I., Forczek, T., Fuksova, K., Li, X., Englmann, M., Gryndler, M., Hartmann, A., Matucha, M., Schmitt-Kopplin, P. & Schroder, P. (2007). Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgaro) and yam bean (Pachyrhizus erosus) plants. Anal. Bioanal. Chem., 389, No. 5, pp. 1447-1457. https://doi.org/10.1007/s00216-007-1579-2
66. Heidel, A.J., Barazani, O. & Baldwin, I.T. (2009). Interaction between herbivore defense and microbial signaling: bacterial quorum-sensing compounds weaken JA-mediated herbivore resistance in Nicotiana attenuata. Chemoecology, 20, pp. 149-154. https://doi.org/10.1007/s00049-009-0031-9
67. Zhao, Q., Zhang, C., Jia, Z., Huang, Y., Li, H. & Song, S. (2015). Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana. Front Plant Sci., 5, p. 807. https://doi.org/10.3389/fpls.2014.00807
68. Zhao, Q., Yang, X.Y., Li, Y., Liu, F., Cao, X.Y., Jia, Z.H. & Song, S.-S. (2020). N-3-oxo-hexanoyl-homoserine lactone, a bacterial quorum sensing signal, enhances salt tolerance in Arabidopsis and wheat. Bot. Stud., 61, p. 8. https://doi.org/10.1186/s40529-020-00283-5
69. Han, S., Li, D., Trost, E., Mayer, K.F., Vlot, A.C., Heller, W., Schmid, M., Hartmann, A. & Rothballer, M. (2016). Systemic responses of barley to the 3-hydroxy-decanoyl-homoserine lactone producing plant beneficial endophyte Acidovorax radicis N 35. Front. Plant. Sci., 7, p. 1868. https://doi.org/10.3389/fpls.2016.01868
70. Zarkani, A.A., Stein, E., Rohrich, C.R., Schikora, M., Evguenieva-Hackenberg, E., Degenkolb, T., Vilcinskas, A., Klug, G., Kogel, K.H. & Schikora, A. (2013). Homoserine lactones influence the reaction of plants to rhizobia. Int. J. Mol. Sci., 14, No. 8, pp. 17122-17146. https://doi.org/10.3390/ijms140817122
71. Schikora, A., Schenk, S. T., Stein, E., Molitor, A., Zuccaro, A. & Kogel, K.-H. (2011). N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol., 157, No. 3, pp. 1407-1418. https://doi.org/10.1104/pp.111.180604
72. Hernandez-Reyes, C., Schenk, S.T., Neumann, C., Kogel, K.H. & Schikora, A. (2014). N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb. Biotechnol., 7, No. 6, pp. 580-588. https://doi.org/10.1111/1751-7915.12177
73. Veliz-Vallejos, D.F., van Noorden, G.E., Yuan, M. & Mathesius, U. (2014). A Sinorhizobium meliloti - specific N-acyl-homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front. Plant Sci., 5, p. 551. https://doi.org/10.3389/fpls.2014.00551
74. Pakdaman, N. & Mostajeran, A. (2018). Phosphate limitation alters Medicago-Sinorhizobium signaling: flavonoid synthesis and ahl production. Russ. J. Plant Physiol., 65, No. 2, pp. 251-259. https://doi.org/10.1134/S1021443718020176