The question of expediency and efficiency of application of microbial preparations in technologies of cultivation of agricultural crops made on the basis of active strains of nodule bacteria was observed and their role in providing plants with biologically fixed nitrogen was characterized. Information on the prevalence, benefits and prospects of using the chemical method of plant protection against pathogens, phytophagous and weeds in agrophytocenoses was presented. Peculiarities of pesticide evaluation according to a number of ecotoxicological indices are highlighted. Data on the effects of individual active substances and mixed chemicals on the viability and reproduction of nitrogen-fixing microorganisms in pure culture were presented. It was shown that severity of these effects depends on the purpose, mechanisms of action, the nomenclature of artificially synthesized substances in the composition of preparations, the concentration applied, and genotype of rhizobia strains. It was noted that the adaptive reactions of microorganisms to the action of pesticides are manifested in the correction of biochemical and physiological processes, which ensure their continued existence under conditions of anthropogenic stress. The effect of chemical plant protection preparations under different methods of their application on symbiotic systems formed with the participation of active strains of nodule bacteria and legumes was analyzed. Depending on the genotypes of micro- and macrosymbionts, components of chemicals, a number of biotic and abiotic environmental factors, different effects of pesticides on the number and weight of root nodules, the N2 assimilation rate, grain yield and quality indices were noted. Possible ways of combining the processes of legume seeds bacterization and their treatment by preparations with fungicidal or insecticidal action due to the use of pesticide-tolerant strains of rhizobia and the involvement of additional components of protective action in the preparations were identified.
Keywords: nitrogen fixation, bacterial preparations, rhizobia, chemical method of plant protection, pesticides, active substance, number and weight of nodules, yield
Full text and supplemented materials
Free full text: PDFReferences
1. Zavalin, A.A., Blagoveshenskaya, G.G., Shmyreva, N.Y., Chernova, L.S., Sokolov, O.A., Alferov, A.A. & Samoilov, L.N. (2015). Current state of the problems of nitrogen in world agriculture. Ahrokhimiia, No. 5, pp. 83-95 [in Russian].
2. Patyka, V.P., Kots, S.Ya., Volkohon, V.V., Sherstoboeva, O.V., Melnychuk, T.M., Kalinichenko, A.V. & Hrynyk, I.V. (2003). Biological Nitrogen. V.P. Patyka (Ed.). Kyiv: Svit [in Ukrainian].
3. Kneip, C., Lockhart, P., Voss, C. & Maier, U.G. (2007). Nitrogen fixation in eukaryotes - new models for symbiosis. BMC Evolutionary Biology, 7, p. 55. https://doi.org/10.1186/1471-2148-7-55
4. Mabrouk, Y., Hemissi, I., Salem, I.B., Mejri, S., Saidi, M. & Belhadj, O. (2018). Potential of Rhizobia in improving nitrogen fixation and yields of legumes. In Rigobelo E. (Ed.). Symbiosis (pp. 107-119), IntechOpen. https://doi.org/10.5772/intechopen.73495
5. Leghari, S.J., Wahocho, N.A., Laghari, G.M., Laghari, A.H., Bhabhan, G.M., Talpur, K.H., Bhutto, T.A., Wahocho, S.A. & Lashari, A.A. (2016). Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 10, No. 9, pp. 209-219.
6. Jinturkar, B.P. (2019). An analytical approach on pesticides of Rhizobia and the legume - Rhizobium. Accent Journal of Economics Ecology & Engineering, 04, special issue 05, pp. 1-7.
7. Mahmud, K., Makaju, S., Ibrahim, R. & Missaoui, A. (2020). Current progress in nitrogen fixing plants and microbiome research. Plants (Basel), 9, No. 1, p. 97. https://doi.org/10.3390/plants9010097
8. Gruber, N. & Galloway, J.N. (2008). An earth-system perspective of the global nitrogen cycle. Nature, 451, No. 7176, pp. 293-296. https://doi.org/10.1038/nature06592
9. Sammauria, R., Kumawat, S., Kumawat, P., Singh, J. & Jatwa, T.K. (2020). Microbial inoculants: potential tool for sustainability of agricultural production systems. Archives of Microbiology, 202, pp. 1-17. https://doi.org/10.1007/s00203-019-01795-w
10. Moklyachuk, L.I., Pinchuk, V.O. & Martkoplishvili, M.M. (2013). Nitrogen losses in agriculture of Ukraine. Ahroekolohichnyi zhurnal, 3, pp. 19-24 [in Ukrainian].
11. Patyka, V.P., Hnatiuk, T.T., Buletsa, N.M. & Kyrylenko, L.V. (2015). Biological nitrogen in the system of agriculture. Zemlerobstvo, 2, pp. 12-20. [in Ukrainian].
12. Garcia-Fraile, P., Menendez, E. & Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineering, 2, No. 3, pp. 183-205. https://doi.org/10.3934/bioeng.2015.3.183
13. Soumare, A., Diedhiou, A.G., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S. & Kouisni, L. (2020). Exploiting biological nitrogen fixation: a route towards a sustainable agriculture. Plants, 9, No. 8, p. 1011. https://doi.org/10.3390/plants9081011
14. Asia-Pacific Biofertilizers Market. Market Data Forecast. Retrieved from https://www.marketdataforecast.com/market-reports/asia-pacific-biofertilizers-market
15. Europe Biological Organic Fertilizer Market - Growth, Trends, Covid-19 Impact, and Forecasts (2021-2026). Precise Market Intelligence and Advisory. Retrieved from https://www. mordorintelligence.com/industry-reports/europe-biological-organic-fertilizers-market
16. Morgun, V.V. & Kots, S.Ya. (2018). The role of biological nitrogen in nitrogen nutrition of plants. Visnyk of the National Academy of Sciences of Ukraine, No. 1, pp. 62-74. [in Ukrainian]. https://doi.org/10.15407/visn2018.01.062
17. Kots, S.Ya., Vorobey, N.A., Kyrychenko, O.V., Melnykova, N.N., Mykhalkiv, L.M. & Pukhtayevych, P.P. (2016). Microbiological preparations for agriculture. Institute of Plant Physiology and Genetics NAS of Ukraine. Kyiv: Logos [in Ukrainian].
18. Lindstrom, K., Murwira, M., Willems, A. & Altier, N. (2010). The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Res. Microbiol., 161, No. 6, pp. 453-463. https://doi.org/10.1016/j.resmic.2010.05.005
19. Tikhonovich, I.A. & Zavalin, A.A. (2016). Aplication potential of nitrogen-fixing and phytostimulating microorganisms for incteacing the efficiency of the agro-industrial complex and improving the agroecological situation in the Russian Federation. Plodorodie, 5, pp. 28-32 [in Russian].
20. Braakhekke, M.C., Rebel, K.T., Dekker, S.C., Smith, B., Beusen, A.H.W. & Wassen, M.J. (2017). Nitrogen leaching from natural ecosystems under global change: A modelling study. Earth Syst. Dynam., 8, pp. 1121-1139. https://doi.org/10.5194/esd-8-1121-2017
21. Tereshchenko, N.N. (2003). Biofertilizer based on microorganisms. Tomsk: Tomsk State University [in Russian].
22. Petrychenko, V.F. & Kots, S.Ya. (2014). Symbiotic systems in modern agricultural production. Visnyk of the National Academy of Sciences of Ukraine, 3, pp. 57-66 [in Ukrainian]. https://doi.org/10.15407/visn2014.03.057
23. Didovych, S.V. & Kulinich, R.O. (2013). Highly productive plant-microbial systems in legume agrocenosis. Feeds and Feed Production, 76, pp. 184-187 [in Ukrainian].
24. Yang, J.W., Kloepper, J.W. & Ryu, C.M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci., 14, pp. 1-4. https://doi.org/10.1016/j.tplants.2008.10.004
25. Kapinos, M.V. & Kalytka, V.V. (2016). Influence of growth regulators and microbial preparations on seed germination and initial growth of peas (Pisum sativum L.) The Taurian Scientific Bulletin. Agricultural sciences, 96, pp. 66-73 [in Ukrainian].
26. Stambulska, U.Ya. & Lushchak, V.I. (2008). Effect of local strains of Rhizobium leguminosarum bv. viciae on Pea plants. Silskohospodarska mikrobiolohiia, 7, pp. 131-137 [in Ukrainian].
27. Kozhemyakov, A.P., Laktionov, Yu.V., Popova, T.A., Orlova, A.G., Kokorina, A.L., Vaishlya, O.B., Agafonov, E.V., Guzhvin, S.A., Churakov, A.A. & Yakovleva, M.T. (2015). Agrotechnological bases for creating improved forms of microbial biologics for agriculture. Agricultural Biology, 3, No. 50, pp. 369-376 [in Russian]. https://doi.org/10.15389/agrobiology.2015.3.369rus
28. Khalep, Y.M., Veremeychik, N.M., Gorban, V.P. & Krutilo, D.V. (2007). The economic ground of expedience of biological preparations use for leguminous plants cultivation. Silskohospodarska mikrobiolohiia, 6, pp. 132-140 [in Ukrainian].
29. Sadanov, A.K., Gavrilova, N.N., Dadonova, T.N. & Ratnikova, I.A. (2015). Criteria for the selection of strains of nodule bacteria in structure of biological preparations for enrichiment of the soil by biological nitrogen and increasie of productivity of productivity of bean cultures. News of the National Academy of Sciences of the Republic of Kazakhstan. Biological and medical series, 1, pp. 115-124 [in Russian].
30. Okrushko, S.E. (2015). Ecological safety of modern plant protection systems. Agriculture and Forestry, 2, pp. 126-134 [in Ukrainian].
31. Oerke, E.C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144, pp. 31-43. https://doi.org/10.1017/S0021859605005708
32. Russell, P.E. (2005). A century of fungicide evolution. The Journal of Agricultural Science, 143, No. 1, pp. 11-25. https://doi.org/10.1017/S0021859605004971
33. Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P. & Hens, L. (2016). Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health, 4, p. 148. https://doi.org/10.3389/fpubh.2016.00148
34. Srivastava, P.K., Singh, V.P., Singh, A., Singh, S., Prasad, S.M., Tripath, D.K. & Chauhan, D.K. (2020). Pesticides in crop production. Hoboken, USA: Wiley Online Library. https://doi.org/10.1002/9781119432241
35. Korniychuk, M.S., Vinnichuk, T.S. & Parminska, L.M. (2014). Protection of field crops from pests and diseases by organic production technologies. Collection of scientific works of the National Scientific Center «Institute of Agriculture of NAAS», 1-2, pp. 98-110 [in Ukrainian].
36. Chervyakova, L.N., Balyuh, O.V., Panchenko, T.P. & Bublik, L.I. (2014). Ekotoxicological assess the application of pesticides to protect crops from pests and diseases by seed treatment method. Plant Protection and Quarantine, 60, pp. 465-472 [in Ukrainian].
37. Bhattacharyya, A., Barik, S.R. & Ganguli, P. (2009). New pesticides molecules, formulation technology and uses: present status and future challenges. J. Plant Prot. Sci., 1, No. 1, pp. 9-15.
38. Trybel, S.O., Strygun, O.O. & Gamanova, O.M. (2014). Current state of a chemical method of plant protection. Quarantine and Plant Protection. 1, No. 210, pp. 1-4 [in Ukrainian].
39. Grigorishin, V.V., Nechaev, O.S., Reyvakh, A.S., Matvienko, V.O. & Shevchuk, O.A. (2016, March). Ecological safety of plant growth inhibitors. Proceedings of the International Scientific-Practical Conference «Scientific information of the century - 2016» (pp. 30-31), Przemysl [in Ukrainian].
40. Lukhmenev, V.P. & Glinushkin, A.P. (2012). Plant protection products against pests, diseases and weeds. Orenburg, Russia: Izd. Tsentr OGAU [in Russian].
41. Yevtushenko, M.D., Maryutin, F.M., Turenko, V.P., Zherebko, V.M. & Sekun, M.P. (2004). Phytopharmacology. Kyiv: Vyshcha osvita [in Ukrainian].
42. Gupta, P.K. (2019). Toxic effects of pesticides and agrochemicals. In Concepts and applications in veterinary toxicology (pp. 59-82). Springer. https://doi.org/10.1007/978-3-030-22250-5_4
43. Vlizlo, V.V. & Salyha, Yu.T. (2012). Some problems of biological safety of application of pesticides in Ukraine. Visnyk ahrarnoi nauky, 1, pp. 24-27 [in Ukrainian].
44. Shevchuk, O.A., Tkachuk, O.O., Khodanitska, O.O. & Vergelis, V.I. (2018). Application content and ecotoxic assessment of chemical plant protection products. Scientific notes of Vinnytsya State Pedagogical University named after Michailo Kotzubynsky. Series: Geography, 30, No. 3-4, pp. 119-128 [in Ukrainian].
45. Zadorozhny, V.S. (2012). Weeds in soybean agrocenosis and methods of their control. Feeds and Feed Production, 71, pp. 49-54 [in Ukrainian].
46. Van den Bosch, F., Blake, J., Gosling, P., Helps, J. C. & Paveley, N. (2020). Identifing when it is financially beneficial to increase or decrease fungicide dose as resistance develops: an evaluation from long-term field experiments. Plant Pathology, 69, No. 4, pp. 631-641. https://doi.org/10.1111/ppa.12787
47. Danylko, V.K. & Tarasovych, L.V. (2008). Analysis of pesticide use in agriculture of Ukraine. Bulletin of ZhSTU: Economic Sciences, 1, No. 43, pp. 157-161 [in Ukrainian].
48. Shevchuk, O.A. (2013, September). Prospects for improving the efficiency and environmental safety of the use of synthetic growth regulators of the inhibitory type in crop production. Proceedings of the IV All-Ukrainian Congress of Ecologists with international participation (pp. 431-433), Vinnytsia: Dilo [in Ukrainian].
49. Bublik, L.I. & Balyuh, O.V. (2011). Ecotoxicological evaluation of application of fungicides for the protection of lupine and soybean. Plant Protection and Quarantine, 57, No. 9, pp. 26-32 [in Ukrainian].
50. Yaschuk, V.U., Ivanov, D.V., Krivosheya, R.M., Tsibulnyak, Yu.O. & Koretskiy, A.P. (2018). The list of pesticides and agrochemicals permitted for use in Ukraine. Kyiv: Yunivest Media [in Ukrainian].
51. Trybel, S.O. & Strygun, O.O. (2013). Protection of plants - real trend of increasing crop production. Plant Protection and Quarantine, 59, pp. 324-336 [in Ukrainian].
52. Vasylenko, L. (2018). Efficiency of application of crop protection chemicals in agriculture. Modern Economics, 11, pp. 38-42 [in Ukrainian]. https://doi.org/10.31521/modecon.V11(2018)-06
53. Malichenko, S.M., Omelchuk, S.V., Mamenko, P.M. & Kots, S.Ya. (2013). Efficiency, competitiveness and technological effectiveness of new analytically selected strains of soybean nodule bacteria. Fiziologia i biokhimia kult. rastenij, 45, No. 1, pp. 53-60 [in Ukrainian].
54. O'Callaghan, M. (2016). Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol. Biotechnol., 100, pp. 5729-5746. https://doi.org/10.1007/s00253-016-7590-9
55. Hazra, D.K., Karmakar, R., Poi, R., Bhattacharya, S. & Mondal, S. (2017). Recent advances in pesticide formulations for eco-friendly and sustainable vegetable pest management: A review. Archives of Agriculture and Environmental Science, 2, No. 3, pp. 232-237. https://doi.org/10.13140/RG.2.2.30036.91527
56. Yakimenko, M.V. & Begun, S.A. (2016). Combined application of soybean Rhizobium strains and some preparation for pre-sowing treatment of soybean seeds. Zemledelie, 6, pp. 46-48 [in Russian].
57. Gaind, S., Rathi, M.S., Kaushik, B.D., Nain, L. & Verma, O.P. (2007). Survival of bio-inoculants on fungicides-treated seeds of wheat, pea and chickpea and subsequent effect on chickpea yield. Journal of Environmental Science and Health, 42, No. 6, pp. 663-668. https://doi.org/10.1080/03601230701465759
58. Revellin, C., Leterme, P. & Catroux, G. (1993). Effect of some fungicide seed treatments on the survival of Bradyrhizobium japonicum and on the nodulation and yield of soybean. Biology and Fertility of Soils, 16, pp. 211-214. https://doi.org/10.1007/BF00361410
59. Aroua, I., Abid, G., Souissi, F., Mannai, K., Nebli, H., Hattab, S., Borgi Z. & Jebara, M. (2019). Identification of two pesticide-tolerant bacteria isolated from Medicago sativa nodule useful for organic soil phytostabilization. International Microbiology, 22, No. 1, pp. 111-120. https://doi.org/10.1007/s10123-018-0033-y
60. Laktionov, Y.V., Kosulnikov, Y.V., Yachno, V.V. & Kozhemyakov, A.P. (2020). Determination of toxicity of various preparative forms of pesticidal fungicides for nodule bacteria inoculants. E3S Web of Conferences, 224, Article Number 04032. https://doi.org/10.1051/e3sconf/202022404032
61. Ahemad, M. & Khan, M.S. (2012). Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1, Emirates J. Food Agric, 24, pp. 334-343.
62. Castro, S., Vinocur, M., Permigiani, M., Halle, C., Taurian, T. & Fabra A. (1997). Interaction of the fungicide mancozeb and Rhizobium sp. in pure culture and under field conditions. Biology and fertility of soils, 25, No. 2, pp. 147-151. https://doi.org/10.1007/s003740050295
63. Campo, R.J., Araujo, R.S. & Hungria, M. (2009). Nitrogen fixation with the soybean crop in Brazil: Compatibility between seed treatment with fungicides and bradyrhizobial inoculants. Symbiosis, 48, No. 1-3, pp. 154-163. https://doi.org/10.1007/BF03179994
64. Vorobey, N.A., Kukol, K.P. & Kots, S.Ya. (2020). Fungicides toxicity assessment on Bradyrhizobium japonicum nodule bacteria in pure culture. Mikrobiol. Z., 82, No. 3, pp. 45-54 [in Ukrainian]. https://doi.org/10.15407/microbiolj82.03.045
65. Hossain, A.K.M. & Alexander, M. (1984). Enhancing growth and nitrogen uptake by soybeans using pesticides. Plant and Soil., 81, pp. 133-141. https://doi.org/10.1007/BF02206902
66. Shahid, M., Zaidi, A. & Khan, M.S. (2020). Modulations in growth, structure, cell viability and antioxidant enzyme of a nodule bacterium Mesorhizobium ciceri induced by pesticides. Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, 23(3), pp. 4103-4119. https://doi.org/10.1007/s10668-020-00758-2
67. Til'ba, V.A., Mashchenko, N.V. & Begun, S.A. (2011). Problems of chemical dressing and bacterization of soybean seeds in the Amur oblast. Russian Agricultural Sciences, 1, pp. 16-20. https://doi.org/10.3103/S1068367411010204
68. Shahid, M. & Khan, M.S. (2017). Assessment of glyphosate and quizalofop mediated toxicity to greengram [Vigna radiata (L.) Wilczek], stress abatement and growth promotion by herbicide tolerant Bradyrhizobium and Pseudomonas species. Int. J. Curr Microbiol. Appl. Sci., 6, No. 12, pp. 3001-3016. https://doi.org/10.20546/ijcmas.2017.612.351
69. Parween, T., Jan, S., Mahmooduzzafar, S., Fatma, T. & Siddiqui, Z.H. (2016). Selective effect of pesticides on plant - a review. Crit. Rev. Food Sci. Nutr., 56, No. 1, pp. 160-179. https://doi.org/10.1080/10408398.2013.787969
70. Vorobey, N.A. & Kots, S.Ya. (2018). Selection strategy for improved symbiotic phenotypes of Bradyrhizobium japonicum. Fiziol. rast. genet., 50, No. 4, pp. 344-357 [in Ukrainian]. https://doi.org/10.15407/frg2018.04.344
71. Kukol, K.P., Vorobey, N.A. & Zhemoyda, A.V. (2019, March). Sensitivity of pure cultures of nodule bacteria obtained by transposon mutagenesis to the action of seed disinfectants. Digest of the scientific works of the X All-Ukrainian scientific-practical conference with international participation «Biological research-2019» (pp. 197-199), Zhytomyr: Polissya [in Ukrainian].
72. Fox, J.E., Starcevic, M., Jones, P.E. Burow, M.E. & McLachlan, J.A. (2004). Phytoestrogen signaling and symbiotic gene activation are disrupted by endocrine-disrupting chemicals. Environmental Health Perspectives, 112, No. 6, pp. 672-677. https://doi.org/10.1289/ehp.6456
73. Kots, S.Ya., Morgun, V.V., Patyka, V.P., Datsenko, V.K., Krugova, O.D., Kyrychenko, O.V., Melnykova, N.M. & Mykhalkiv, L.M. (2010). Biological nitrogen fixation: legume-rhizobial symbiosis. Vol. 1. Kyiv: Logos [in Russian].
74. Bushneva, N.A. & Saenko, G.M. (2018). Compatibility of fungicide dressers and inoculators on soybean. Maslichnyie kulturyi, 3, No. 175, pp. 124-127 [in Russian]. https://doi.org/10.25230/2412-608X-2018-3-175-124-127
75. Dunfield, K.E., Siciliano, S.D. & Germida, J.J. (2000). The fungicides thiram and captan affect the phenotypic characteristics of Rhizobium leguminosarum strain C1 as determined by FAME and Biolog analyses. Biology and Fertility of Soils, 31, No. 3, pp. 303-309. https://doi.org/10.1007/s003740050660
76. Kosulnikov, Yu.V. (2019). The study of the toxicity of a number of treating agents of leguminous crops for the nodule bacteria of soybeans and lupine. Bulletin of the St. Petersburg State Agrarian University, 1, No. 54, pp. 52-56 [in Russian].
77. Hussain, S., Siddique, T., Saleem, M., Arshad, M. & Khalid, A. (2009). Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Advances in agronomy, 102, pp. 159-200. https://doi.org/10.1016/S0065-2113(09)01005-0
78. Kruglov, Yu.V. (1991). The microflora of the soil and pesticides. Moskva: Ahropromizdat Publ. [in Russian].
79. Andriuk, K.I, Iutynska, G.O., Antipchuk, A.F., Valagurova, O.V., Kozyritska, V.S. & Ponomarenko, S.P. (2001). Functioning of microbial coenoses of soil in the conditions of anthropogenic loading. Kyiv: Oberehy [in Ukrainian].
80. Petrichenko, V.F., Korneychuk, O.V., Pasichnik, L.A., Butsenko, L.M., Zhitkevich, N.B., Gnatiuk, T.T. & Patyka, V.P. (2013). Bacterial disease of agricultural plants and pesticides. Visnyk ahrarnoi nauky, 4, pp. 21-26 [in Ukrainian].
81. Sabluk, V.T., Dvorak, K.P., Zhitkevich, N.V. & Butsenko, L.M. (2013). Susceptibility of sugar beet bacteriosis pathogens to pesticides. Tsukrovi buriaky, 4, pp 20-21 [in Ukrainian].
82. Stenersen, J. (2004). Chemical pesticides: mode of action and toxicology. Boca Raton, Florida: CRC Press LLC. https://doi.org/10.1201/9780203646830
83. Mil'ko, E.S. & Egorov, N.S. (1991). Heterogeneity of bacterial population and the dissociation process. Moscow: Izd. Mosk. Univ. [in Russian].
84. Buletsa, N.M., Butsenko, L.M., Pasichnyk, L.A. & Patyka, V.P. (2016). Physiology of growth Pseudomonas syringae pv. atrofaciens for the effects of pesticides. Mikrobiol. Z., 78, No. 3, pp. 52-60 [in Ukrainian]. https://doi.org/10.15407/microbiolj78.03.052
85. Ayansina, A.D. & Oso, B.A. (2006). Effect of two commonly used herbicides on soil microflora of two different concentrations. Afr. J. Biochem., 5, No. 2, pp. 129-132.
86. Laabs, V., Wehrhan, A., Pinto, A., Dores, E. & Amelung, W. (2007). Pesticide fate in tropical wetlands of Brazil: An aquatic microcosm study under semi-field conditions. Chemosphere, 67, No. 5, pp. 975-989. https://doi.org/10.1016/j.chemosphere.2006.10.067
87. Weber, J.B., Wilkerson, G.G. & Reinhardt, C.F. (2004). Calculating pesticide sorption coefficients (Kd) using selected soil properties. Chemosphere, 55, No. 2, pp. 157-166. https://doi.org/10.1016/j.chemosphere.2003.10.049
88. Anderson, A., Baldock, J.A., Rogers, S.L., Bellotti, W. & Gill, G. (2004). Influence of chlorsulfuron on rhizobial growth, nodule formation, and nitrogen fixation with chickpea. Australian Journal of Agricultural Research, 55, No. 10, pp. 1059-1070. https://doi.org/10.1071/AR03057
89. Campo, R.J. & Hungria, M. (2000). Compatibility of using inoculants and fungicides in the treatment of soybean seeds. Embrapa Soja-Circular Tecnica, Londrina [in Portugese].
90. Kukol, K.P., Vorobey, N.A., Pukhtaievych, P.P., Rybachenko, L.I. & Yakymchuk, R.Ya. (2020). Effect of fungicides on the efficiency of soybean inoculation with pesticide-resistant nodule bacteria. Silskohospodarska mikrobiolohiia, 31, pp. 26-35 [in Ukrainian]. https://doi.org/10.35868/1997-3004.31.26-35
91. Vozniuk, S.V., Tytova, L.V., Ratushinska, O.V. & Iutynska G.O. (2016). Formation and functioning of symbiotic systems and rhizosphere microbiocenisis of soybean under various fungicides application. Mikrobiol. Z., 78, No. 4, pp. 59-70 [in Ukrainian]. https://doi.org/10.15407/microbiolj78.04.059
92. Sharma, B. & Singh, S.R. (2014). A study on the interactive effect of different fungicides with rhizobium in lentil (Lenusculinaris). Int. J. Life Sci. Res., 3, pp. 105-113.
93. Pyschur, I.M., Kanivets, V.I. & Larchenko, I.V. (2011). Influence of modern herbicides on formation soybean-rhizobial symbiosis at use of microbic preparation rhizogumin. Silskohospodarska mikrobiolohiia, 14, pp. 100-108 [in Ukrainian].
94. Karpenko, V.P. & Korobko, O.O. (2018). The productivity of chickpea under the influence of a herbicide and biological specimen. Bulletin of Uman National University of Horticulture, 2, pp. 64-67 [in Ukrainian]. https://doi.org/10.31395/2310-0478-2018-21-64-67
95. Gutyansky, R., Ilchenko, N., Shelyakina, T. & Posilaeva, O. (2018). Yield and quality of pea, chickpea, soybean seeds under the influence of weeds, inoculation and herbicide. Selektsiia i nasinnytstvo, 113, pp. 179-188 [in Ukrainian]. https://doi.org/10.30835/2413-7510.2018.134375
96. Khan, M.S., Zaidi, A. & Rizvi, P.Q. (2006). Biotoxic effects of herbicides on growth, nodulation, nitrogenase activity, and seed production in chickpeas. Communications in soil science and plant analysis, 37, No. 11-12, pp. 1783-1793. https://doi.org/10.1080/00103620600710645
97. Dubey, M., Verma, V.K., Verma, N., Ahmed, A. & Waskle, U. (2019). Effect of seed treatment with fungicide, micronutrients and biofertilizers on growth and yield of chickpea in madhya pradesh. Int. J. Curr. Microbiol. App. Sci., 8, No. 11, pp. 1045-1051. https://doi.org/10.20546/ijcmas.2019.811.123
98. Safronava, H.V., Sukhovitskaya, L.A. & Karalenak, N.V. (2007). The effect of inoculants and pesticides on development of legume-rhizobial symbiosis and productivity of grain-legume crops. Silskohospodarska mikrobiolohiia, 5, pp. 61-73 [in Russian].
99. Ahmad, M.S.A., Javed, F., Ashraf, M. & Hafeez, F.Y. (2006). Effect of fungicide seed treatments on N2-fixation and nodulation in pea, Pisum sativum L. Bull. Environ. Contam. Toxicol., 77, No. 6, pp. 896-904. https://doi.org/10.1007/s00128-006-1229-y
100. Tittabutr, P., Payakaponga, W., Teaumroonga, N., Singletonb, W. & Boonkerda, N. (2007). Growth, Survival and Field Performance of Bradyrhizobial Liquid Inoculant Formulations with Polymeric Additives. Science Asia, 33, pp. 69-77. doi: 10.2306/scienceasia1513-1874.2007.33.069 https://doi.org/10.2306/scienceasia1513-1874.2007.33.069
101. Rivera, D., Obando, M., Barbosa, H., Rojas-Tapias, D. & Bonilla Buitrago, R. (2014). Evaluation of polymers for the liquid rhizobial formulation and their influence in the Rhizobium-Cowpea interaction. Universitas Scientiarum, 19(3). pp. 265-275. https://doi.org/10.11144/Javeriana.SC19-3.eplr
102. Laktionov, Yu.V., Kosulnikov, Yu.V., Dudnikova, D.V., Yahno, V.V. & Kojemyakov A.P. (2019). Pre-sowing protection of inoculated soybean Glycine max (L.) Merr. seeds by water-soluble polymer compositions and their solid-phase modification. Sel'skokhozyaistvennaya biologiya, 54, No. 5, pp. 1052-1059 [in Russian]. https://doi.org/10.15389/agrobiology.2019.5.1052rus
103. Dubey, V., Singh, D., Shukla, A., Shukla, S. & Singh, N. (2012). Effect of application of different pesticides to leguminous crops on soil microflora of Sidhi district (M.P.). Int. J. Eng. Res. Dev., 3, No. 12, pp. 1-3.
104. Van Eerd, L.L., Hoagland, R.E., Zablotowicz, R.M. & Hall, J.C. (2003). Pesticide metabolism in plants and microorganisms. Weed Sci., 51, No. 4, pp. 472-495. [0472:PMIPAM]2.0.CO;2 [0472:PMIPAM]2.0.CO;2
105. Paromenskaya, L.N. & Chernova, T.A. (1990). Problems of increasing the efficiency of legume-rhizobial symbiosis under the conditions of using plant protection chemicals. Tr. VNYYSKhM, 60, pp. 58-63 [in Russian].
106. Yang, C.F. & Lee, C.M. (2008). Enrichment, isolation, and characterization of 4-chlorophenol-degrading bacterium Rhizobium sp. 4-CP-20. Biodegradation, 19, No. 3, pp. 329-336. https://doi.org/10.1007/s10532-007-9139-1
107. Strelkov, V.D., Isakova, L.I., Dyadyuchenko, L.V., Chubenko, T.I. & Nazarenko, D.Yu. (2011). Antidotes of herbicide 2,4-D on the sunflower. Plant Protection and Quarantine, 5, pp. 29-31 [in Russian].
108. Pavlyshche, A.V., Mamenko, T.P., Rybachenko, L.I. & Kots, S.Ya. (2018). Influence of fungicides on the formation, functioning and peroxidase activity of root soybean nodules at inoculation by rhizobia, incubated with lectin. Mikrobiol. Z., 80, No. 5, pp. 76-89 [in Ukrainian]. https://doi.org/10.15407/microbiolj80.05.076
109. Khyzhnyak, S.V., Voitsitskiy, V.M., Danchuk, V.V., Midyk, S.V., Laposha, O.A. & Ushkalov, V.O. (2018). Pathways of migration persistent pesticides through chains of terrestrial and aquatic ecosystems. Biological Resources and Nature Managment, 10, No. 1-2, pp. 36-43 [in Ukrainian]. https://doi.org/10.31548/bio2018.01.005