Fiziol. rast. genet. 2021, vol. 53, no. 2, 128-159, doi: https://doi.org/10.15407/frg2021.02.128

Biological nitrogen fixation: achievements and prospects

Kots S.Ya.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The results obtained during 60 years of the investigations concerning biological nitrogen fixation made by the scientists of the Department of symbiotic nitrogen fixation are presented. It was considered the study of physiological and biochemical characteristics as well as regulation of the synthesis and functioning nitrogenase from lupine and soybean symbiotic systems. It was shown the contribution of the scientists of the department to the study of interaction between nitrogen fixation and photosynthesis and respiration in the symbiotic systems under different conditions during their formation and functioning. Special attention is paid to the study on interaction between symbionts during the formation of symbiotic and associative nitrogen fixing systems and importance of rhizosphere microbiome for plant development. Much attention is paid to disclosure of the role of lectins and carbohydrates in the formation of plant-bacterial systems and its functioning. The questions of the effect of environment factors (mineral nitrogen nutrition, water supply, plant growth regulators, fungicides) on symbiotic systems as well as of the role of phytohormones and antioxidant enzymes during their functioning, and of the development of means to increase symbiosis effectivity, in particular under stress are discussed. It was shown theoretical and practical importance the investigations made by the scientists of the department: creation of new high-productive soybean cultivars, obtaining new strains of nitrogen fixing bacteria (particularly, those which are the main part of bacterial fertilizers for strategical agricultural plants), development of new microbial fertilizers generation, setting up their semi industrial production, development and implementation the environmentally friendly technology for obtaining plant protein, creation and maintenance the collection of the strains of symbiotic and associative microorganisms which is a national heritage. The prospects of fundamental studies and practical developments concerning biological nitrogen fixation are discussed.

Keywords: biological nitrogen fixation, strains, lectins, polysaccharides, rhizobia, microbial preparations

Fiziol. rast. genet.
2021, vol. 53, no. 2, 128-159

Full text and supplemented materials

Free full text: PDF  

References

1. Kots, S.Ya., Morgun, V.V., Patyka, V.P., Datsenko, V.K., Krugova, O.D., Kyrychenko, O.V., Melnykova, N.M. & Mykhalkiv, L.M. (2010). Biological nitrogen fixation: legume-rhizobial symbiosis. Vol. 1. Kyiv: Logos [in Russian].

2. Patyka, V.P., Kots, S.Ya., Volkohon, V.V., Sherstoboeva, O.V., Melnychuk, T.M., Kalinichenko, A.V. & Hrynyk, I.V. (2003). Biological Nitrogen. V.P. Patyka (Ed.). Kyiv: Svit [in Ukrainian].

3. Manorik, A.V. & Starchenkov, E.P. (1969). Fixation of atmospheric nitrogen by fractions obtained from lupine nodules. Reports of the Academy of Sciences of the USSR, 186, No. 4, pp. 975-977 [in Russian].

4. Manorik, A.V., Starchenkov, E.P. & Datsenko, V.K. (1971). Methods of obtaining and purification of cell-free nitrogen-fixing preparations from various nitrogen-fixing organisms. Kyiv: Naukova dumka [in Russian].

5. Manorik, A.V., Starchenkov, E.P. & Datsenko, V.K. (1971, March). Using 15N to study nitrogen fixation by symbiotic systems. Abstracts of the Working Scientific and Methodological Meeting on the use of the stable isotope 15N in research in agrochemistry, microbiology, soil science and agriculture (pp. 31-32), Leningrad [in Russian].

6. Manorik, A.V., Starchenkov, E.P. & Datsenko, V.K. (1971). Obtaining nitrogen-fixing components of the enzyme system of yellow lupine bacteroids. Reports of the Academy of Sciences of the USSR, No. 4, pp. 363-365 [in Ukrainian].

7. Starchenkov, E.P. (1983). Nitrogenase of symbiotic systems lupine-Rhizobium lupini of various efficacy (Extended abstract of Doctor thesis). Moscow, Russia [in Russian].

8. Starchenkov, E.P., Yakovleva, N.S. & Datsenko, V.K. (1971). Influence of oxygen and storage conditions of intact yellow lupine nodules on fixation of atmospheric nitrogen. Fiziologia i biokhimia kult. rastenij, 3, No. 1, pp. 33-35 [in Russian].

9. Krikunets, V.M. & Bilima, N.I. (1977). The effect of oxygen concentration on nitrogen fixation by separated nodules of yellow lupine depending on the phase of vegetation of plants. Ukrainian Botanical Journal, 28, No. 4, pp. 494-497 [in Ukrainian].

10. Starchenkov, E.P., Datsenko, V.K. & Protsenko, N.A. (1980). Dependence of nitrogenase activity of lupin nodules bacteroids on oxygen concentration in gas medium. Fiziologia i biokhimia kult. rastenij, 12, No. 5, pp. 504-510 [in Russian].

11. Starchenkov, E.P., Belima, N.I. & Zhelyuk, V.M. (1984). Binding of molecular nitrogen by nodule bacteria under symbiotic and cultural conditions. Kyiv: Naukova dumka [in Russian].

12. Malichenko, S.M., Krugova, E.D., Gnip, A.I. & Starchenkov, E.P. (1983). Synthesis and functional activity of Rhizobium outside of symbiosis with a plant. Molecular Biology, 5, pp. 57-61 [in Russian].

13. Malichenko, S.M., Krugova, E.D. & Starchenkov, E.P. (1986). Immunological identification of nitrogenase proteins in an asymbiotic form Rhizobium lupini. Fiziologia i biokhimia kult. rastenij, 18, No. 3, pp. 232-239 [in Russian].

14. Malichenko, S.M., Lisova, N.E. & Starchenkov, E.P. (1979). Expression of nif-operon of Rhizobium japonicum as effected by cyclic adenosine monophosphate. Molecular Biology, 24, pp. 50-54 [in Russian].

15. Malichenko, S.M., Nichik, M.M. & Starchenkov, E.P. (1978). Experimental evidence of localization of nif-operon in microsymbiont during nitrogen fixation by leguminous plants. Molecular Biology, 19, pp. 78-82 [in Russian].

16. Starchenkov, E.P., Malichenko, S.M. & Nichik, M.M. (1980). Expression of nif-genes of Rhizobium of various activities in vitro & in vivo. Molecular Biology, 26, pp. 27-33 [in Russian].

17. Starchenkov, E.P., Malichenko, S.M. & Krugova, E.D. (1981). Synthesis of nitrogenase by free-living nodule bacteria of lupine. Reports of the Academy of Sciences of the USSR, 259, No. 4, pp. 993-996 [in Russian].

18. Kots, S.Ya., Malichenko, S.M., Krugova, O.D., Mandrovska, N.M. & Kyrychenko, O.V. (2001). Physiological and biochemical features of plant nutrition by biological nitrogen. Kyiv: Logos [in Ukrainian].

19. Kots, S.Ya. & Mykhalkiv, L.M. (2005). Physiology of symbiosis and nitrogen nutrition of alfalfa. Kyiv: Logos [in Ukrainian].

20. Kots, S.Ya., Morgun, V.V., Patyka, V.P., Malichenko, S.M., Mamenko, P.M., Kirizii, D.A., Mykhalkiv, L.M., Beregovenko, S.K. & Melnikova, N.N. (2011). Biological nitrogen fixation: legume-rhizobial symbiosis. Vol. 2. Kyiv: Logos [in Russian].

21. Kiriziy, D.A., Vorobey, N.A. & Kots, S.Ya. (2007). The relationship of nitrogen fixation and photosynthesis as the main components of the production process in alfalfa. Russian Journal of Plant Physiology, 54, No. 5, pp. 666-671 [in Russian]. https://doi.org/10.1134/S1021443707050032

22. Vorobey, N.A. & Kots, S.Ya. (2009). Nitrogen fixing activity and growth of alfalfa vegetative organs under the combined inoculation with active and inactive Sinorhizobium meliloti strains. Fiziologia i biokhimia kult. rastenij, 41, No. 2, pp. 162-167 [in Russian].

23. Kots, S.Ya., Morgun, V.V., Tikhonovich, I.A., Provorov, N.A., Patyka, V.F., Petrychenko, V.F., Melnykova, N.N. & Mamenko, P.N. (2011). Biological nitrogen fixation: genetics of nitrogen fixation, genetic engineering of strains. Vol. 3. Kyiv: Logos [in Russian].

24. Maryushkin, V.F., Datsenko, V.K., Kurochkina, L.L. & Zaritskaya-Burdenyuk, S.D. (1995). Efficiency of intravarietal selection in soybeans in terms of nitrogen-fixing activity. Fiziologia i biokhimia kult. rastenij, 27, No. 3, pp. 165-169 [in Russian].

25. Copyright certificate 267, Ukraine. Soybean Chornobura. Maryushkin, V.F., Datsenko, V.K., Sichkar, V.I., Mikhailov, V.G., Fortunyak, A.T., Zaritska-Burdenyuk, S.D. Application No. 9002847, 14.11.1989. Registered in the State Register of Plant Varieties (1995) [in Ukrainian].

26. Melnykova, N., Gryshchuk, O., Mykhalkiv, L., Mamenko, P. & Kots, S. (2013). Plant growth promoting properties of bacteria isolated from the rhizosphere of soybean and pea. Natura Montenegrina, Podgorica, No. 12 (3-4), pp. 915-923.

27. Melnykova, N. & Kots, S. (2018, October). Effect of microorganisms from the rhizosphere of black locust on seed germination and seedling growth. Proc. Sci. Conf. «Dendrologicke dni v Arborete «Mlynany 2018»» (pp. 110-114), Arboretum Mlynany UEL SAV, Zvolen.

28. Melnykova, N.N., Mykhalkiv, L.M., Omelchuk, S.V. & Beregovenko, S.K. (2018). Rhizosphere microorganisms as a factor influencing the rhizobia-legume symbiosis. Fiziol. rast. genet., 50, No. 4, pp. 299-321 [in Russian]. https://doi.org/10.15407/frg2018.04.299

29. Melnykova, N.M. (2019). Effect of rhizobial exopolysaccharides on soybean seed germination and nodule development in the soybean-rhizobia symbiosis. Fiziol. rast. genet., 51, No. 5, pp. 436-446 [in Ukrainian]. https://doi.org/10.15407/frg2019.05.436

30. Kyrychenko, O.V. (2002). Relationships of leguminous plants and nodule bacteria on the level of before-contact interactions when forming nitrogen-fixing systems. Fiziologia i biokhimia kult. rastenij, 34, No. 2, pp. 95-101 [in Russian].

31. Kyrychenko, O.V. (2005). Study of chemotaxis of nodule bacteria of lupine to organic substances. Mikrobiolohichnyi Zhurnal, 67, No. 3, pp. 19-26 [in Russian].

32. Kyrychenko, O.V. (2005). Chemotaxis of Rhizobium of lupin to the amino acids, saccharides, solts of organic acids at the presence of mineral nitrogen. Fiziologia i biokhimia kult. rastenij, 37, No. 4, pp. 333-340 [in Ukrainian].

33. Martins, S.J., Medeiros, F.H.V., Lakshmanan, V. & Bais, H.P. (2018). Impact of seed exudates on growth and biofilm formation of Bacillus amyloliquefaciens ALB629 in common bean. Front Microbiol., Jan 9, No. 8, 2631. https://doi.org/10.3389/fmicb.2017.02631

34. Coelho, L.C.S., Mignoni, D.S.B., Silva, F.S.B. & Braga, M.R. (2019). Seed exudates of Sesbania virgata (Cav.) Pers. stimulate the asymbiotic phase of the arbuscular mycorrhizal fungus Gigaspora albida. Hoehnea, 46, No. 1, e272018. https://doi.org/10.1590/2236-8906-27/2018

35. Melnykova, N.M. (2014). Formation of the legume-rhizobium symbiosis under influence of lupine seed exudates. The Scientific Issues of Ternopil Volodymyr Hnatiuk National Pedagogical University. Series Biology, 60, No. 3, pp. 131-134 [in Ukrainian].

36. Melnykova, N.N. & Omelchuk, S.V. (2009). Effect of legume seed exudates on the formation of Rhizobium-legume symbiosis. Appl. Biochem. Microbiol., 45, No. 3, pp. 297-302. https://doi.org/10.1134/S0003683809030107

37. Belima, N.I. & Manorik, A.V. (1967). Content of free amino acids in molasses, roots and root visions of some plants. Fiziologo-biokhimicheskiye osnovy pitaniya rasteniy, 2, pp. 63-71 [in Russian].

38. Melnykova, N.M. (2018, October). Soybean seed exudate modulates the effect of root exudate on nodulation and nitrogen fixation of soybean. Abstracts of the IV International Scientific Conference Modern Plant Biology: Theoretical and Applied Aspects (p. 83), Kharkiv: V.N. Karazin Kharkiv National University.

39. Kirichenko, E.V., Malichenko, S.M. & Krugova, E.D. (1994). Amino acid composition of lupine phytohemagglutinins. Fiziologia i biokhimia kult. rastenij, 26, No. 2, pp. 200-203 [in Russian].

40. Malichenko, S.M., Nazarenko, N.I., Kirichenko, E.V. & Zaets, V.N. (1994). Isolation of lectins from seeds and roots of lupine (Lupinus luteus L.) and study their properties. Fiziologia i biokhimia kult. rastenij, 26, No. 3, pp. 252-256 [in Russian].

41. Kirichenko, E.V., Malichenko, S.M. & Starchenkov, E.P. (1995). Lectin of leguminous plants as a molecular component of carbohydrate protein system of symbionts recognition. Fiziologia i biokhimia kult. rastenij, 27, No. 5-6, pp. 315-323 [in Russian].

42. Kyrychenko, O.V., Malichenko, S.M. & Kosenko, L.V. (2001). Exopolysaccharides of lupin and soybean nodule bacteria and their role in the formation of symbiotic interconnections between rhizobia and leguminous plants. Fiziologia i biokhimia kult. rastenij, 33, No. 6, pp. 539-544 [in Ukrainian].

43. Malichenko, S.M., Datsenko, V.K., Mamenko, P.M. & Kots, S.Ya. (2002). Participation of lectins specific and non-specific to nodule bacteria of legumes in the formation and functioning of the nitrogen fixing complex. The Scientific Issues of Ternopil Volodymyr Hnatiuk National Pedagogical University. Series Biology, No. 3 (18), pp. 49-57 [in Ukrainian].

44. Mamenko, P.M., Malichenko, S.M., Datsenko, V.K. & Kots, S.Ya. (2003). Symbiotic properties and soybean productivity depending on the concentration of its lectin in the inoculum suspension. Fiziologia i biokhimia kult. rastenij, 35, No. 3, pp. 215-221 [in Ukrainian].

45. Malichenko, S.M., Mamenko, P.M. & Kots, S.Ya. (2002). Influence of various activity of strains of the genus Bradyrhizobium on the dynamics of lectin activity of the root nodules and the functioning of the nitrogen fixing apparatus of lupine. Fiziologia i biokhimia kult. rastenij, 34, No. 6, pp. 511-516 [in Ukrainian].

46. Sytnikov, D.M., Kots, S.Ya. & Malichenko, S.M. (2006). Lectin activity of different soybean organs under conditions of efficient and inefficient symbiosis. Fiziologia i biokhimia kult. rastenij, 38, No. 11, pp. 53-60 [in Russian]. https://doi.org/10.1134/S102144370602004X

47. Sytnikov, D.M., Kots, S.Ya., Malichenko, S.M. & Kiriziy, D.A. (2006). Photosynthetic rate and lectin activity of soybean leaves after inoculation with rhizobia together with homologous lectin. Plant Physiology, 53, No. 2, pp. 189-195 [in Russian]. https://doi.org/10.1134/S102144370602004X

48. Kots, S.Ya., Beregovenko, S.K., Kyrychenko, E.V. & Melnykova, N.N. (2007). Features of the interaction of plants and nitrogen-fixing microorganisms. Kyiv: Naukova dumka [in Russian].

49. Melnykova, N.M. (1997). Biochemical characterization of noduleless soybean lectins. Ukrain'skyi biokhimichnyi zhurnal, 69, No. 5-6, pp. 158-162 [in Ukrainian].

50. Melnykova, N.M. (1997). Peculiarities of amino acid composition of lectin from noduleless soybean. Ukrain'skyi biokhimichnyi zhurnal, 69, No. 5-6, pp. 200-202 [in Ukrainian].

51. Melnykova, N.M., Mamenko, P.M. & Kots, S.Ya. (2004). Two haemagglutinating protein fractions with different carbohydrate specificity from non-nodulating soybean seeds. Dopov. Nac. Akad. Nauk. Ukr., No. 11, pp. 167-171 [in Ukrainian].

52. Melnykova, N.M., Malichenko, S.M. & Kots, S.Ya. (2003). Protein composition and carbohydrate-binding activity of non-nodulating soybean root extract. Proc. 12th Intern. Congr. on Genes, Gene families, and Isozymes (Eds. C. Schnarrenberger, B. Wittmann-Liebold) (pp. 261-264), Medimond.

53. Melnykova, N.M., Mamenko, P.M., Omel'chuk, S.V. & Malichenko, S.M. (2005). Formation of soybean seedlings under the action of the lectins from nodulating and non-nodulating soybean seeds. Plant Nutrition: Theory and Practice. Kyiv: Logos, pp. 363-370 [in Ukrainian].

54. Kovalchuk, N.V., Melnykova, N.M. & Musatenko, L.I. (2012). Role of phytolectin in the life cycle of plants. Biopolym. Cell, 28, No. 3, pp. 171-180. https://doi.org/10.7124/bc.00004A

55. Melnykova, N.M., Mykhalkiv, L.M., Mamenko, P.M. & Kots, S.Ya. (2013). The areas of application for plant lectins. Biopolym. Cell, 29, No. 5, pp. 357-366. https://doi.org/10.7124/bc.00082A

56. Melnykova, N.M., Kovalchuk, N.V., Kots, S.Ya. & Musatenko, L.I. (2009). Influence of soybean seeds lectins on the legume-rhizobium symbiosis formation and functioning. Fiziologia i biokhimia kult. rastenij, 41, No. 5, pp. 439-446 [in Russian].

57. Melnykova, N.M., Mykhalkiv, L.M. & Omel'chuk, S.V. (2009). Nitrogen fixation activity of the soybean-Bradyrhizobium japonicum symbiosis and plant biomass formation under the action of non-nodulating soybean seed lectin. In Plant physiology: problems and prospects of development, Vol. 1 (pp. 492-496), Kyiv: Logos [in Ukrainian].

58. Melnykova, N.M. & Kots, S.Ya. (2015). Effect of binary mixtures composed of soybean and pea lectins on the establishment of the soybean-rhizobium symbiosis. Bull. Kharkiv Nat. Agrar. Univ. Ser. Biol., 2 (35), pp. 64-71 [in Russian].

59. Kots, S.Ya., Mykhalkiv, L.M., Veselovska, L.I. & Beregovenko, S.K. (2014). The nitrogen fixing activity and productivity of alfalfa inoculated with Sinorhizobium meliloti under different water supply and using of protein with hemagglutinin activity. Bull. Kharkiv Nat. Agrar. Univ. Ser. Biol., 23, No. 1129, pp. 59-64 [in Ukrainian].

60. Kots, S.Ya., Mykhalkiv, L.M., Mamenko, P.M. & Volkogon, M.V. (2011). The study of alfalfa-Sinorhizobium meliloti symbiosis productivity under different water conditions and the influence of the legume seed lectin. J. Agricult. Sci. Technol., No. 3, pp. 454-457.

61. Pat. 102177 UA, IPC A0125/00, A01№65/20. Applying soybean seed lectin to regulate forming and functioning alfalfa and soybean legume-rhizobial symbiosis of at drought, Kots, S.Ya., Mykhalkiv, L.M., Mamenko, P.M., Veselovska, L.I., Publ. 26.10.2015 [in Ukrainian].

62. Mykhalkiv, L.M., Kots, S.Ya., Zhemojda, A.V. & Kots, T.A. (2021). Symbiotic properties of Sinorhizobium meliloti and ethylene production by alfalfa plants at the early stages of the symbiosis formation under different water supply and seed treatment by lectin. Mikrobiol. Z., 83, No. 1, pp. 32-38. https://doi.org/10.15407/microbiolj83.01.032

63. Veselovska, L.I., Mykhalkiv, L.M. & Kots, S.Ya. (2013). The influence of exogenous lectin on the effectivity of Glycine max-Bradyrhizobium japonicum symbiosis under drought conditions. Fiziol. rast. genet., 45, No. 4, pp. 319-326 [in Ukrainian].

64. Veselovska, L.I. & Kots, S.Ya. (2014). The influence of different ways of lectin application on the symbiotic systems soybean-Bradyrhizobium japonicum, formed under optimal and insufficient water supply conditions. Fiziol. rast. genet., 46, No. 5, pp. 437-448 [in Ukrainian].

65. Kots, S.Ya., Kiriziy, D.A. & Veselovska, L.I. (2013). The intensity of photosynthesis of the soybean-Bradyrhizobium japonicum symbiotic systems under exogenous lectin influence. Reports of the National Academy of Sciences of Ukraine, No. 11, pp. 157-162 [in Ukrainian].

66. Kiriziy, D.A., Veselovska, L.I. & Kots, S.Ya. (2014). The influence of drought on gas exchange of leaves of soybean inoculated by rhizobia under seed lectin application. Fiziol. rast. genet., 46, No. 6, pp. 498-506 [in Ukrainian].

67. Rybachenko, L.I., Rybachenko, O.R. & Kots, S.Ya. (2016, October). Influence of exogenous lectin and presowing inoculation on the pool of phytohormones of cytokinin nature in soybean plants grown under different water supply. Current issues of biology and ecology: Proceedings of the Intern. Sci.-Pract. Conf. (pp. 381-384),Vinnytsia [in Ukrainian].

68. Kots, S.Ya., Rybachenko, L.I. & Mykhalkiv, L.M. (2016). Activity of redox enzymes in symbiotic systems of soybean Bradyrhizobium japonicum under the action of exogenous lectin and different water supply. Silskohospodarska mikrobiolohiia, 23, pp. 17-23 [in Ukrainian].

69. Kyrychenko, O.V. (2005). The interaction of plant lectins with soil nitrogen fixing bacteria. Fiziologia i biokhimia kult. rastenij, 37, No. 5, pp. 402-405. [in Russian].

70. Kyrychenko, E.V. (2014). Crop biotechnology. Nikolaev: Ilion [in Russian].

71. Kirichenko, E.V. & Titova, L.V. (2006). Soybean lectin as a component of a composite biopreparation involving Bradyrhizobium japonicum 634b. Prikl. Bioch. Microbiol., 42, No. 2, pp. 219-223 [in Russian]. https://doi.org/10.1134/S0003683806020153

72. Kyrychenko, O.V. & Sergienko, V.G. (2006). Fungitoxic activity of plant lectins. Fiziologia i biokhimia kult. rastenij, 38, No. 6, pp. 526-534 [in Ukrainian].

73. Krugova, O.D., Mandrovska, N.M. & Kyrychenko, O.V. (2006). Effect of exogenous lectin on the endogenous lectin and antioxidant enzymes activity and flavonoide content in wheat. The Ukrainian Biochemical Journal, 78, No. 2, pp. 106-112 [in Ukrainian].

74. Pat. 41723 UA, A01N 63/00, A01C 1/06. Method for using vegetable lectins for protecting vegetable crops from diseases, Serhiienko, V.H., Kyrychenko, O.V., Perkovska, H.Y. Publ. 10.06.2009 [in Ukrainian].

75. Kots, S.Ya., Mykhalkiv, L.M., Mandrovska, N.M., Kosenko, L.V. & Zatovska, T.V. (2002). Influence of glucan Sinorhizobium meliloti on the formation and functioning of nitrogen-fixing symbiotic systems of alfalfa under different water supply. Fiziologia i biokhimia kult. rastenij, 34, No. 5, pp. 413-418 [in Ukrainian].

76. Kosenko, L.V., Mykhalkiv, L.M., Krugova, E.D., Mandrovskaya, N.M. & Kots, S.Ya. (2003). Biological activity of glucan Sinorhizobium meliloti. Microbiology, No. 5, pp. 633-638 [in Ukrainian].

77. Kots, S.Y., Mykhalkiv, L.M. & Melnykova, N.M. (2003). Improving lucerne productivity under water stress by treatment with periplasmic glucan. Grassland Science in Europe, No. 8, pp. 649-652.

78. Kots, S.Ya., Volkogon, N.V. & Gryshchuk, O.O. (2010). Ability of strains and tn5-mutants of Bradyrhizobium japonicum to synthesize iaa and aba in vitro. Fiziologia i biokhimia kult. rastenij, 42, No. 6, pp. 491-496 [in Ukrainian].

79. Volkogon, M.V., Mamenko, P.M. & Kots, S.Ya. (2009). IAA and zeatin balance in soybean plants under seeds inoculation with various strains and mutants of Bradyrhizobium japonicum. Fiziologia i biokhimia kult. rastenij, 41, No. 5, pp. 408-416 [in Ukrainian].

80. Gryshchuk, O.O. (2014). Phytohormonal status of soybean plants at use of strains with different symbiotic characteristics (Extended abstract of candidate thesis). Institute of Plant Physiology and Genetics National, Academy of Sciences of Ukraine, Kyiv, Ukraine [in Ukrainian].

81. Kots, S.Ya., Grigoryuk, I.A., Mykhalkiv, L.M., Beregovenko, S.K. & Dragovoz, I.V. (2006). Effect of natural and synthetic plant growth regulators on the nitrogen-fixing and photosynthetic activities of alfalfa under different water supply conditions. Agricultural Chemistry, No. 5, pp. 41-48 [in Russian].

82. Pat. 102763 UA, IPC 2015.01, A01N25/00 A01P21/00. A method for increasing the nitrogen-fixing activity and productivity of symbiotic systems alfalfa-Sinorhizobium meliloti, Kots, S.Ya., Mykhalkiv, L.M., Beregovenko, S.K. Publ. 25.11.15 [in Ukrainian].

83. Mamenko, P.M., Kots, S.Ya., Drozdenko, G.M. & Zhemojda, A.V. (2008). Protein composition of soybean nodules, inoculated strains and Tn5-mutants of Bradyrhizobium japonicum of various efficacy. Fiziologia i biokhimia kult. rastenij, 40, No. 6, pp. 525-531 [in Ukrainian].

84. Kondratiuk, Iu.Iu., Rybachenko, O.R., Mamenko, P.M. & Kots, S.Ya. (2015). The influence of drought on the protein content of soybean roots under inoculation by Bradyrhizobium japonicum strains with different effectiveness. Fiziol. rast. genet., 47, No. 4, pp. 361-366 [in Ukrainian].

85. Levishko, A.S., Mamenko, P.M. & Kots, S.Ya. (2013, March). Research of distribution of metabolites of bean-rhizobial symbiosis of different efficiency. Plant Physiology in the System of Modern Biological Knowledge and Sciences: Materials of the Scientific and Methodical Seminar (pp. 84-85), Kharkiv [in Ukrainian].

86. Levishko, A., Mamenko, P. & Kots, S. (2014, September). Metabolic changes in soybean roots inoculated by Bradyrhizobium japonicum strains. FEBS J. Special Issue: FEBS EMBO 2014 Conf. (p. 582), Paris.

87. Levishko, A.S., Mamenko, P.M. & Kots, S.Ya. (2014). Dynamics of organic acids in soybean roots inoculated by Bradyrhizobium japonicum strains with different symbiotic properties. The Scientific Issues of Ternopil Volodymyr Hnatiuk National Pedagogical University. Ser. Biology. Biolohichna fiksatsiia azotu, pp. 118-121 [in Ukrainian].

88. Levishko, A.S. & Khomenko, Yu.O. (2012). Dynamics of metabolites distribution in the functioning of soybean-rhizobial symbiosis of different efficacy. Scientific notes of the ecological laboratory USPU, 15, pp. 57-61 [in Ukrainian].

89. Pavlyshche, A.V., Kyrychenko, O.V. & Kots, S.Ya. (2018). Metabolic changes in the content of organic acids in roots of Glycine max (Fabaceae) at the early stages of symbiosis formation under the influence of fungicides. Ukrainian Botanical Journal, 75, No. 5, pp. 480-488. https://doi.org/10.15407/ukrbotj

90. Vasyliuk, V.M., Krugova, O.D., Mandrovska, N.M. & Kots, S.Y. (2007). Peroxidase and catalase activities in the soybean inoculated by Tn5-mutants of Bradyrhizobium japonicum. Fiziologia i biokhimia kult. rastenij, 39, No. 4, pp. 334-342 [in Ukrainian].

91. Mandrovska, N.M., Krugova, O.D., Vasyliuk, V.M. & Kots, S.Ya. (2008). Catalase activity in the roots and nodules of soybean, inoculated by Tn5-mutants of Bradyrhizobium japonicum. The Bulletin of Ukrainian Society of Geneticists and Breeders, 6, No. 1, pp. 73-81 [in Ukrainian].

92. Mandrovska, N.M., Krugova, O.D. & Kots, S.Ya. (2010). The catalase activity of the soybean symbiotic systems of different effectivity during the early stages of the symbiosis formation. Bull. Kharkiv Nat. Agrar. Univ. Ser. Biology, 1, No. 19, pp. 69-74 [in Ukrainian].

93. Krugova, E.D., Kots, S.Ya., Mandrovskaya, N.M. & Vasyliuk, V.N. (2008). Peroxidase and polyphenol oxidase activities in soybean nodules and roots, inoculated by Tn5-mutants of Bradyrhizobium japonicum. Bull. Kharkiv Nat. Agrar. Univ. Ser. Biology, 1, pp. 6-14 [in Russian].

94. Krugova, E.D. (2009). Specific strategies of nodule and phytopathogenic bacteria at infection of plants. Fiziologia i biokhimia kult. rastenij, 41, No. 1, pp. 3-15 [in Russian].

95. Krugova, O.D. (2009). Peroxidase and polyphenol oxidase activities in symbiotic soybean systems formed with the participation of Bradyrhizobium japonicum mutants in the early stages of the formation of symbiosis. In Morgun, V.V. (Ed.) Plant physiology: problems and perspectives of development, Vol. 1 (pp. 428-436). Kyiv: Logos [in Ukrainian].

96. Mamenko, T.P. (2019). The reaction of soybean symbiotic apparatus to losses of water content in leaves and roots, induced by continuous action of drought. Ecology and noospherology, 30, No. 1, pp. 44-49 [in Ukrainian]. https://doi.org/10.15421/031908

97. Mamenko, T.P., Homenko, Yu.A. & Kots, S.Y. (2018). Activity of superoxide dismutase and enzymes of ascorbate - glutathione cycle in Glycine max-Bradyrhizobium japonicum symbiotic systems under drought conditions. Mikrobiol. Z., 80, No. 3, pp. 77-89 [in Ukrainian]. https://doi.org/10.15407/microbiolj80.03.077

98. Kots, S.Ya., Mamenko, T.P. & Homenko, Yu.O. (2019). The content of hydrogen peroxide and catalase activity in different on effectiveness of symbiotic systems Glycine max-Bradyrhizobium japonicum under drought conditions. Mikrobiol. Z., 81, No. 4, pp. 62-75. https://doi.org/10.15407/microbiolj81.04.062

99. Morgun, V.V., Kots, S.Ya., Mamenko, T.P. & Vorobey, N.A. (2020). Lipid peroxidation intensity in different on effectiveness of symbiotic systems Glycine max-Bradyrhizobium japonicum under drought conditions. Mikrobiol. Z., 82, No. 4, pp. 23-30. https://doi.org/10.15407/microbiolj82.04.023

100. Pavlyshche, A.V., Mamenko, T.P., Rybachenko, L.I. & Kots, S.Ya. (2018). Influence of fungicides on the formation, functioning and peroxidase activity of root soybean nodules at inoculation by Rhizobia, incubated with lectin. Mikrobiol. Z., 80, No. 5, pp. 76-89 [in Ukrainian]. https://doi.org/10.15407/microbiolj

101. Kots, S.Ya., Mamenko, T.P. & Pavlyshche, A.V. (2018). Activity of nitrogen fixation and antioxidant enzymes in symbiotic systems Glycine max-Bradyrhizobium japonicum for complex treatment with lectin and fungicides. Regulatory Mechanisms in Biosystems, 9, No. 2, pp. 148-155 [in Ukrainian]. https://doi.org/10.15421/021822

102. Mamenko, T.P., Khomenko, Y.O. & Kots, S.Ya. (2019). Influence of fungicides on activities of enzymes of phenolic metabolism in the early stages of formation and functioning of soybean symbiotic apparatus. Regulatory Mechanisms in Biosystems, 10, No. 1, pp. 111-116. https://doi.org/10.15421/021917

103. Mamenko, T.P., Kots, S.Y. & Khomenko, Y.O. (2020). The intensity of ethylene release by soybean plants under the influence of fungicides in the early stages of legume-rhizobial symbiosis. Regulatory Mechanisms in Biosystems, 11, No. 1, pp. 98-104. https://doi.org/10.15421/022014

104. Pavlyshche, A.V., Kiriziy, D.A. & Kots, S.Ya. (2017). The reaction of symbiotic soybean systems to the action of fungicides under various treatment. Fiziol. rast. genet., 49, No. 3, pp. 237-247 [in Ukrainian]. https://doi.org/10.15407/frg2017.03.237

105. Pavlyshche, A.V., Yakimchuk, R.A., Omelchuk, S.V., Zhemoyda, A.V. & Kots, S.Ya. (2018). Symbiotic properties and seed productivity of soybean in field conditions under various methods of seeds treatment with fungicides. Fiziol. rast. genet., 50, No. 4, pp. 358-368 [in Ukrainian]. https://doi.org/10.15407/frg2018.04.358

106. Omelchuk, S.V. & Yakymchuk, R.A. (2019). Efficacy of soybean-rhizobia symbiosis under the influence of fungicide acanto plus. Fiziol. rast. genet., 51, No. 5, pp. 447-454 [in Ukrainian]. https://doi.org/10.15407/frg2019.05.447

107. Omelchuk, S.V., Zhemojda, A.V. & Pavlysche, A.V. (2017). Formation, functioning and productivity of the soybean-Rhizobium symbiosis under the influence of fungicides lamardor and maxim. Fiziol. rast. genet., 49, No. 1, pp. 54-63 [in Ukrainian]. https://doi.org/10.15407/frg2017.01.054

108. Pat. 78755 UA, IPC CO5F11/00, C12№1/100. Bacteria strain Bradyrhizobium japo­nicum PC08 (B-7399) for the preparation of bacterial fertilizer under soybean, Kots, S.Ya., Malichenko, S.M., Mamenko, P.M., Vorobey, N.A., Yakymchuk, R.A., Publ. 25.03.13 [in Ukrainian].

109. Pat. 111391 UA, IPC C12N 1/20, C05F 11/08, C12R 1/01. Bacteria strain Sinorhizobium meliloti I-7411 for producing bacterial fertilizers for lucerne, Kots, S.Ya., Vorobey, N.A., Publ. 25.04.16 [in Ukrainian].

110. Pat. 126060 UA, IPC C12N 1/20, C05F 11/08. Bacteria strain Bradyrhizobium japonicum B-7538 for the preparation of bacterial fertilizer under soybean. Kots, S.Ya., Vorobey, N.A., Publ. 11.06.18 [in Ukrainian].

111. Pat. 138542 UA, IPC 05F 11/08, C12N 1/20, C12R 1/41, A01N 63/02. Bacteria strain Rhizobium galegae K50 (IMB B-7551) for the obtaining bacterial fertilizer under eastern galega. Kots, S.Ya., Vorobey, N.A., Kukol, K.P., Pukhtaievych, P.P., Kudryavchenko, L.A., Publ. 25.11.19 [in Ukrainian].

112. Vorobey, N.A. (2011). New highly efficient symbiotic systems of legume plants and recombinant strains of nodule bacteria. (Extended abstract of candidate thesis). Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine [in Ukrainian].

113. Vorobey, N.A., Kots, S.Ya. & Butnitskiy, I.M. (2007). Effectiveness of alfalfa symbiotic systems at inoculation with Tn5-mutants Sinorhizobium meliloti. Fiziologia i biokhimia kult. rastenij, 39, No. 2, pp. 105-113 [in Ukrainian].

114. Kukol, K.P., Vorobey, N.A. & Kots, S.Ya. (2019). Sensitivity of pure cultures of Bradyrhizobium japonicum to fungicides. Silskohospodarska Mikrobiolohiia, 30, pp. 20-31 [in Ukrainian]. https://doi.org/10.35868/1997-3004.30.20-31

115. Kukol, K.P., Vorobey, N.A., Pukhtaievych, P.P., Rybachenko, L.I. & Yakymchuk, R.A. (2020). Effect of fungicides on the efficiency of soybean inoculation with pesticide-resistant nodule bacteria. Silskohospodarska Mikrobiolohiia, 3, pp. 26-35 [in Ukrainian]. https://doi.org/10.35868/1997-3004.31.26-35

116. Pukhtaievych, P.P., Kukol, K.P., Vorobey, N.A. & Kots, S.Ya. (2020). The reaction of self-fertile alfalfa lines to inoculation with nodule bacteria. The Journal of V.N. Karazin Kharkiv National University. Ser. Biology, 34, pp. 163-174 [in Ukrainian]. https:// doi.org/10.26565/2075-5457-2020-34-17

117. Pukhtaievych, P.P., Kukol, E.P., Vorobey, N.A., Vasileva, V. & Kots, S.Ya. (2019). Efficiency of inoculation by nodule bacteria of alfalfa grown in mixture with smooth bromegrass at various rates of phosphorus and potassium nutrition. Fiziol. rast. genet., 51, No. 5, pp. 415-424 [in Ukrainian]. https://doi.org/10.15407/frg2019.05.415

118. Vorobey, N.A. & Kots, S.Ya. (2018). Selection strategy for improved symbiotic phenotypes of Bradyrhizobium japonicum. Fiziol. rast. genet., 50, No. 4, pp. 344-357 [in Ukrainian]. https://doi.org/10.15407/frg2018.04.344

119. Vorobey, N.A., Kots, S.Ya., Kudryavchenko, L.A. & Pukhtayevych, P.P. (2017). Biotechnology of creation active Tn5-mutants of Rhizobium galegae. Fiziol. rast. genet., 49, No. 5, pp. 425-433 [in Ukrainian]. https://doi.org/10.15407/frg2017.05.425

120. Kots, S.Ya., Vorobey, N.A., Kyrychenko, O.V., Melnykova, N.N., Mykhalkiv, L.M. & Pukhtayevych, P.P. (2016). Microbiological preparations for agriculture. Institute of Plant Physiology and Genetics NAS of Ukraine. Kyiv: Logos [in Ukrainian].

121. Morgun, V.V. & Kots, S.Ya. (2018). Biological nitrogen. Prospects for biotechnology in the agricultural state. Zerno, 142, No.1, pp. 38-43 [in Ukrainian].

122. Kots, S.Ya. & Pukhtaievych, P.P. (2019). Inoculation of soybean seeds: what, how and when. Propozyciya: «Biologicals in the protection of seeds and plants». Special issue, pp. 14-17 [in Ukrainian].

123. Kots, S.Ya. (2020). Bacterial preparations: benefits and risks. Propozyciya, No. 07-08, pp. 48-53 [in Ukrainian].

124. Kots, S.Ya., Mykhalkiv, L.M. & Vorobey, N.A. (2020). High-quality inoculants are an effective way to increase alfalfa productivity.Ahrobiznes sohodni, 420, No. 5, pp. 82-84 [in Ukrainian].

125. Kots, S.Ya., Rybachenko, L.I., Pukhtaievych, P.P. & Rybachenko, O.R. (2018). Bradyrhizobium japonicum reaction in pure culture and symbiotic systems to the use of nanocarboxylates of microelements. Silskohospodarska Mikrobiolohiia, 28, pp. 41-52 [in Ukrainian]. https://doi.org/10.35868/1997-3004.28.41-52

126. Morgun, V.V., Rybachenko, L.I., Kots, S.Ya., Kiriziy, D.A., Kukol, K.P. & Rybachenko, O.R. (2019). Features of the functioning of symbiotic systems and photosynthetic apparatus of soybean inoculated by Bradyrhizobium japonicum under the influence of metal carboxylate. Mikrobiologichnyi Zhurnal, 81, No. 1, pp. 94-105 [in Ukrainian]. https://doi.org/10.15407/microbiolj81.01.094

127. Kots, S.Ya., Rybachenko, L.I., Pukhtaievych, P.P. & Mokrytsky, K.A. (2019). Formation and functioning of symbiotic systems of soya-Bradyrhizobium japonicum for the influence of complexes of nanoparticles of carboxylates of microelements. Silskohospodarska Mikrobiolohiia, 29, pp. 12-20 [in Ukrainian]. https://doi.org/10.35868/1997-3004.29.12-20

128. Petrychenko, V.F. & Kots, S.Ya. (2014). Symbiotic systems in modern agricultural manufacture. Visnyk NAN Ukrainy, No. 3, pp. 57-66 [in Ukrainian]. https://doi.org/10.15407/visn2014.03.057