Fiziol. rast. genet. 2021, vol. 53, no. 2, 112-127, doi:

Genetic improvement of plants: main scientific achievements and innovative developments

Morgun V.V., Rybalka O.I., Dubrovna O.V.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The anniversary article presents the current state, principles and methods of genetic improvement of plants and the main achievements of scientists of the Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine in this direction. A retrospective review is made of the discoveries of scientists awarded the Lenin Prize, the State Prizes of the USSR and Ukraine in the field of science and technology, and high government awards. Scientific data on the genetic threat caused by the Chernobyl accident and man-made pollution are summarized. Practical achievements in the field of heterosis and mutation selection of cereals, molecular markers use, genetic engineering, and remote hybridization are covered in detail. The results of the study and implementation in the programs of selection and genetic research of new genes and genetic systems that affect the quantitative and qualitative characteristics of grain are presented. Attention is paid to the innovative developments of the Institute, in particular to new high-yielding winter wheat varieties and hybrids of maize, which are widely sown in Ukraine and abroad, and their transfer to agricultural production.

Keywords: plant genetic improvement, main methods, achievements, selection, varieties, Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine

Fiziol. rast. genet.
2021, vol. 53, no. 2, 112-127

Full text and supplemented materials

Free full text: PDF  


1. Hsu, P., Lander, E. & Zhang, F. (2014). Development and application of CRISPR-Cas9 for genome engineering. Cell, 157 (6), pp. 1262-1278.

2. Hiei, Y., Ishida, Y. & Komari, T. (2014). Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Sci., 5, pp. 1-11.

3. Khlestkina, E.T. (2013). Molecular markers in genetic research and breeding. Vavilov journal of genetics and breeding, 17, No. 4/2, pp. 1044-1054 [in Russian].

4. Morgun, V.V. (2015). Genetic improvement of plants - the basis of modern agricultural production. Visnyk NAN Ukrainy, 10, pp. 3-8 [in Ukrainian].

5. Clive, J. (2011). Global status of commercialized biotech GM Crops. ISAAA Brief, No. 43, pp. 1-8.

6. Morgun, V.V. & Rybalka, O.I. (2017). Strategy of genetic improvement of food safety, medical and preventive nutrition and needs of industrial processing. Visnyk NAN Ukrainy, 3, pp. 54-64 [in Ukrainian].

7. Kalashnikova, E.A. (2003). Biological bases of plant cell selection. Dokl. Timir. Acad. of Agricul., No. 275, pp.110-112 [in Russian].

8. Reshetnikov, V.N., Spiridovich, E.V. & Nosov, A.M. (2014). Plant biotechnology and the prospects for its development. Fiziol. rast. genet., 46, No. 1, pp. 3-18 [in Russian].

9. Galovic, V., Kotaranin, Z. & Dencic, S. (2005). In vitro assessment of wheat tolerance to drought. Genetika, 37, No. 2, pp. 165-171.

10. Clemente, T. & Mitra, A. (2005). Genetic engineering of wheat: protocols and use to enhance stress tolerance. Genetically modified crops: their development, uses, and risks. New York: Haworth Press.

11. Ding, L., Li, S., Gao, J., Wang, Y., Yang, G. & He, G. (2009). Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol. Biol. Reports, 36, pp. 29-36.

12. Borisjuk, N., Kishchenko, O., Eliby, S., Schramm, C., Anderson, P., Jatayev, S., Kurishbayev, A. & Shavrukov, Y. (2019). Genetic modification for wheat improvement: from transgenesis to genome editing. BioMed Research International. Article ID 6216304, 18 p.

13. Opabode, J. (2006). Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnol. and Mol. Biol. Review, 1, pp.12-20.

14. Abdul, R., Ma, Z. & Wang, H. (2010). Genetic transformation of wheat (Triticum aestivum L.): A review. Triticeae Genomics and Genetics, 1, No. 2, pp. 1-7.

15. Bornet, B. & Branchard, M. (2012). Nonanchored Inter Simple Sequence Repeat (ISSR) markers: Reproducible and specific tools for genome fingerprinting. Plant Mol. Biol. Rep., 19, pp. 209-215.

16. Kalendar, R. & Schulman, A. (2006). IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature protocols, 1, No. 5, pp. 2478-2484.

17. Trebichalsky, A., Kalendar, R., Schulman, A., Stratula, O., Galova, Z., Balazova, Z. & Chnapec, M. (2013). Detection of genetic relationships among spring and winter triticale (Triticosecale Witt.) and rye cultivars (Secale cereale L.) by using retrotransposon-based markers. Czech. J. Genet. Plant Breed., 49, pp. 171-174.

18. Xu, Y., Xie, C., Wan, J., He, Z. & Prasanna, B. (2013). Marker-assisted selection in cereals: platforms, strategies and examples. Cereal Genomics II, pp. 375-411.

19. Yabe, S. & Iwata, H. (2020). Genomics-assisted breeding in minor and pseudo-cereals. Breed Sci., 70(1), pp. 19-31.

20. Shishlova, A.M. (2006). Problems of distant hybridization of cereal crops. «Innovative technologies in breeding and seed production of agricultural crops». International scientific and practical conference: materials. All-Russia. scientific research. Institute of selection and seed production of vegetable crops. Moscow, Vol. 2, pp. 367-373.

21. Cox, T., Wu, J., Wang, Sh., Cai, J., Zhang, Q. & Fu, B. (2017). Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat. Crop J., 5 (5), pp. 1-12

22. Gorafi, Y., Kim, J.-S., Elbashir, A. & Tsujimoto, H. (2018). A population of wheat synthetic derivatives: an effective platform to explore, harness and utilize genetic diversity of Aegilops tauschii for wheat improvement. Theor. Appl. Genet., 131, pp. 1615-1625.

23. Morgun, V.V. & Logvinenko, V.F. (1995). Mutational selection of wheat. Kyiv: Naukova dumka [in Russian].

24. Morgun, V.V. & Yakymchuk, R.A. (2010). Genetic consequences of the accident at the Chernobyl NPP. Kyiv: Logos [in Ukrainian].

25. Morgun, V.V. & Yakymchuk, R.A. (2016). Genetic consequences of radionuclide contamination of the environment after the accident at Chornobyl nuclear power plant. Fiziol. rast. genet., 48, No. 4, pp. 279-297.

26. Yakymchuk, R.A. (2018). Cytogenetic activity of radionuclide contamination of water reservoirs of the alienation zone of Chornobyl NPP. Regulatory Mechanisms in Biosystems, 9, No. 2, pp. 189-197.

27. Morgun, V.V., Yakymchuk, R.A. & Azizov, I.V. (2019). Peculiarities of the mechanisms of spontaneous, and induced by ionizing radiation and chemical factors mutagenesis. Fiziol. rast. genet., 51, No. 6, pp. 463-481.

28. Morgun, V.V. (2020). Innovative achievements of the Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine as an important component of the grain prosperity of our country. Plant Physiol. and Genetics, 52 (4), pp. 262-276 [in Ukrainian].

29. Morgun, V.V. (2019). New varieties of winter wheat as an important component of the country's grain prosperity. Plant Physiol. and Genetics, 51 (4), pp. 347-354 [in Ukrainian].

30. Dubrovna, O.V. & Lyalko, I.I. (2003). Microclonal reproduction of selection-valuable forms of sugar and fodder beets. Factors of experimental evolution of organisms, 1, pp. 410-414.

31. Bavol, A.V., Dubrovna, O.V. & Lyalko, I.I. (2009). In vitro selection of bread wheat for resistance to Gaeumannomyces graminis var. tritici. Fiziol. biokhim. kult. rastenij, 41, No. 4, pp. 314-320 [in Ukrainian].

32. Zinchenko, M.O., Dubrovna, O.V. & Bavol, O.V. (2012). In vitro selection of bread wheat on complex resistance to metabolites of the take-all and water deficit. Visn. Ukr. t-va henetykiv i selektsioneriv, 10, No. 1, pp. 20-27 [in Ukrainian].

33. Dubrovna, O.V. (2017). In vitro selection of wheat for resistance to abiotic stress factors Fiziol. rast. genet., 49, No. 4, pp. 279-292.

34. Bavol, A.V., Dubrovna, O.V. & Morgun, B.V. (2014). Identification of Dreb1 genes in bread wheat plant-regenerants, obtained from callus lines resistant to modeled water deficit. Fiziol. rast. genet., 46, No. 2, pp. 136-142 [in Ukrainian].

35. Borsani, O., Zhu, J., Verslues, E. P., Sunkar, R. & Zhu, J. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123, pp. 1279-1291.

36. Tishchenko, E.N. (2013). Genetic engineering with the use of L-proline metabolism genes to increase the plant osmotolerance. Fiziol. rast. genet., 45, No. 6, pp. 488-500 [in Russian].

37. Dubrovna, O.V., Morgun, B.V. & Bavol, A.V. (2014). Biotechnology of wheat: Cell Selection and Genetic Engineering. Kyiv: Logos.

38. Dubrovna, O.V. & Morgun, B.V. (2018). Current status of research on Agrobacterium-mediated wheat transformation. Fiziol. rast. genet., 50, No. 3, pp. 187-217.

39. Voronova, S.S., Goncharuk, O.M., Bavol, A.V. & Dubrovna, O.V. (2015). Genetic transformation of bread wheat using vector constructs containing the genes of proline metabolism. Visnyk Ukrainskoho tovarystva henetykiv i selektsioneriv, 13 (1), pp. 28-33 [in Ukrainian].

40. Mikhalskaya, S.I., Sergeeva, L.E., Matveeva, A.Yu., Kobernik, N.I., Kochetov, A.V., Tishchenko, E.N. & Morgun, B.V. (2014). Increase of Free Proline Content in Osmotolerant Maize Plants with Double-Stranded RNA-Suppressor of Proline Dehydrogenase Gene. Fiziol. rast. genet., 46, No. 6, pp. 482-489 [in Russian].

41. Tishchenko, O.M., Komisarenko, A.G., Mykhalska, S.I., Sergeeva, L.E., Adamenko, N.I., Morgun, B.V. & Kochetov, A.V. (2014). Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) in vitro and in planta using LBA4404 strain harboring binare vector pBi2E with dsRNA-supressor of proline dehydrogenase gene. Cytol. and Genet., 48, No. 4, pp. 19-30.

42. Bavol, A.V., Dubrovna, O.V. & Morgun, B.V. (2013). Obtaining and analysis by IRAP-PCR of transgenic bread wheat cell lines. Biotechnol. Acta, 6, No. 6, pp. 113-119 [in Ukrainian].

43. Dubrovna, O.V., Velikozhon, L.G., Slivka, L.V., Kondratskaya, I.P., Reshetnikov, V.N. & Makai, S. (2020). Detection of DNA polymorphism of transgenic wheat plants with proline metabolism heterologous genes. Fiziol. rast. genet., 52, No. 3, pp. 196-207.

44. Dubrovnaya, O.V., Lyalko, I.I., Bavol, A.V. & Voronova, S.S. (2016). Analysis of meiosis in transgenic wheat plants obtained by Agrobacterium-mediated transformation in culture in vitro and in planta Molecular and Applied Genetics, 20, pp. 21-29.

45. Kulesh, S.S., Dubrovna, O.V. & Slivka, L.V. (2019). Physiological and biochemical analysis of transgenic wheat plants of seed generation T2 with a double stranded RNA suppressor of the proline dehydrogenase gene. Factors of experimental evolution of organisms, 24, pp. 121-126.

46. Morgun, B.V., Stepanenko, A.I., Stepanenko, O.V., Bannikova, M.O., Holubenko, A.V., Nitovska, I.O., Maystrov, P.D. & Grodzinsky, D.M. (2016). Implementation of molecular systems for identification of genetic polymorphism in winter wheat to obtain high-performance specialized varieties. Science and Innovation, 12(2), pp. 40-56.

47. Morgun, V.V. & Topchii, T.V. (2018). The importance of resistant varieties of winter wheat, the study of sources and donors of resistance to pests and main pathogen Fiziol. rast. genet., 50, No. 3, pp. 218-240.

48. Stepanenko, A.I., Morgun, B.V., Chugunkova, T.V., Adamenko, N.I. & Velykozhon, L.G. (2012). Screening of winter bread wheat varieties for the presence of wheat-rye translocation by DNA markers. Bulletin of the Ukrainian Society of Geneticists and Breeders, 10, No. 2, pp. 311-318.

49. Morgun, B.V., Stepanenko, O.V., Stepanenko, A.I. & Rybalka, O.I. (2015). Molecular genetic identification of polymorphism of Wx genes in bread wheat hybrids with multiplex polymerase chain reactions. Fiziol. rast. genet., 47, No. 1, pp. 25-35 [in Ukrainian].

50. Morgun, B.V., Chugunkova, T.V., Rybalka, O.I., Pochinok, V.M., Tarasyuk, O.I. & Stepanenko, A.I. (2013). Molecular identification of Glu-B1al allele in varieties and lines of wheat. Fiziol. rast. genet., 45, No. 4, pp. 290-295 [in Ukrainian].

51. Morgun, B.V., Pokhylko, S.Yu., Pochynok, V.M., Duplij, V.P., Dugan, O.M., Khrystan, O.O. & Stepanenko, A.I. (2017). Genetic diversity of puroindoline genes in lines of bread wheat, carriers GPC-B1 from Triticum turgidum spp. Dicoccoides. Fiziol. rast. genet., 49, No. 3, pp. 229-236.

52. Stepanenko, A.I., Troyanovska, A.V., Morgun, B.V., Chugunkova, T.V., Velykozhon, L.G., Rybalka, O.I. & Polishchuk, S.S. (2014). Marker analysis of polyphenol oxidase (PPO) genes in bread wheat varieties. Plant Physiol. and Genetics, 46, No. 6, pp. 490-497.

53. Stepanenko, O.V., Stepanenko, A.I., Kuzminskiy, Ye.V. & Morgun, B.V. (2017). Identification of Psy1 genes alleles responsible for carotenoid accumulation in wheat grains. Biotechnologia Acta, 10, No. 2, pp. 57-66.

54. Morgun, V.V., Gavrilyuk, M.M., Oksem, V.P., Morgun, B.V. & Pochynok, V.M. (2014). Introduction of New, Stress Resistant, High-yielding Winter Wheat Varieties Based on Chromosome Engineering and Marker-Assisted Selection. Nauka ta innovatsiyi, 10, No. 5, pp. 40-48 [in Ukrainian].

55. Morgun, V.V., Tarasyuk, O.I., Pochinok, V.M. & Rybalka, A.I. (2015). Unique grain quality breeding lines of wheat with rare alleles of Gli / Glu loci. Fiziol. rast. genet., 47, No. 4, pp. 302-309 [in Russian].

56. Rybalka, O.I., Morgun, V.V. & Pochinok, V.M. (2012). Genetic bases of selection of wheat varieties by specialization of their technological use. Physiology and biochemistry of cultivated plants, 44, No. 2, pp. 95-124.

57. Cakmak, I., Torun, A., Millet, E., Feldman, M., Fahima, T., Korol, A., Nevo, B., Braun, H. & Ozkan, H. (2004). T. dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil. Sci. Plant Nutr., 50, pp. 1047-1054.

58. Distelfeld, A., Uauy, C., Fahima, T. & Dubcovsky, J. (2006). Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol., 169, pp. 753-763.

59. Rybalka, O., Morgun, B. & Polischuk, S. (2018). GPC-B1 (NAM-B1) gene as a new genetic resource in wheat breeding for high grain protein content and micronutrients. Fiziol. rast. genet., 50, No. 4, pp. 279-298 [in Ukrainian].

60. Rybalka, O.I., Morgun, V.V. & Morgun, B.V. (2015). High amylose wheat is a way to radically improve the nutritional value of grain. Plant Physiology and Genetics, 47, No. 1, pp. 25-35.

61. Sherman, J., Souza, E., See, D. & Talbert, L. (2008). Microsatellite markers for kernel color genes in wheat. Crop Science, 48, pp. 1419-1424.

62. Guo, Z., Xu, P., Zhang, Z. & Guo, Y. (2012). Segregation ratios of colored grains in F1 hybrid wheat. Crop Breeding and Applied Biotechnology, 12, pp. 126-131.

63. Li, W., Shan, F., Sun, Sh., Corke, H. & Beta, T. (2005). Free radical scavenging properties and phenolic content of Chinese black-grained wheat. J. Agric. Food Chem., 53(22), pp. 8533-8536.

64. Rybalka, O.I., Morgun, V.V. & Morgun, B.V. (2020). Colored grain of wheat and barley - a new breeding strategy of crops with grain of high nutritional value Fiziol. rast. genet., 52, No. 2, pp. 95-127.

65. Rybalka, O.I., Morgun, V.V., Morgun, B.V. & Pochinok, V.M. (2015). Agronomic potential and prospects of triticale. Plant Physiol. and Genetics, 47, No. 2, pp. 95-111.

66. Rybalka, O., Morgun, B. & Polischuk, S. (2016). Barley as a product of functional nutrition. Kyiv: Logos [in Ukrainian].

67. Morgun, V.V. (2016). The contribution of genetics and plant breeding in ensuring food security of Ukraine. Bulletin of the National Academy of Sciences of Ukraine, 5, pp. 20-23.