Fiziol. rast. genet. 2019, vol. 51, no. 4, 324-337, doi: https://doi.org/10.15407/frg2019.04.324

Effect of exogenous abscisic acid on morphological characteristics of winter wheat and spelt under hyperthermia

Kosakivska I.V., Vasyuk V.A., Voytenko L.V.

  • M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereshchenkivska St., Kyiv, 01601, Ukraine

The effect of short-term heat stress (+40 oC, 2 h) on the growth characteristics of 3- and 14-day-old Triticum aestivum L. and Triticum spelta L. plants, the grains of which have been primed with solutions of abscisic acid (ABA), was investigated in laboratory conditions. At the beginning of development, the inhibitory effect of high temperature on the growth of 3-day-old seedlings of winter wheat cv. Podolyanka, primed with 10—7 M solution of ABA, was less pronounced than in non-primed plants. On the sixth day, when passing from heterotrophic to autotrophic feeding, the highest growth indices were recorded in plants primed with 10—6 M ABA. The length of the roots and shoots of 3-day spelt cv. Frankenkorn primed with 10–7 M ABA after hyperthermia increased by 8 and 2 %, respectively. On the sixth day, the morphological characteristics of shoots and roots of primed plants exceeded the control. In 14-day-old winter wheat plants, which were primed with ABA, after short-term hyperthermia, an increase in the length and mass of the roots was recorded by 9 and 19 %, respectively. Dry shoots mass after heat stress remained almost unchanged, and in the roots it decreased significantly. During the recovery period on 21 day, the dry mass of the control plants decreased by 14 %, and that of the primed plants by 9 %. The ABA priming induced root growth during recovery. After hyperthermia, the mass of shoots and roots of 14-day old primed spelt plants increased by 4 %, while that of non-primed ones decreased by 10 and 5 %, respectively. After recovery, the reduction in the length and mass of roots of unprimed plants was 19 and 12 %, respectively whereas in primed plants, the root length decreased by 13 %, fresh mass by 19, and dry mass by 18 %. The results showed that priming with ABA increased resistance to high temperature of 3- and 14-day plants of winter wheat and spelt. T. spelta was more stress resistant and recovered better. The possibility of exogenous ABA using to increase the stress resistance of cereals is discussed.

Keywords: Triticum aestivum, Triticum spelta, abscisic acid, temperature stress, morphometry, resistance

Fiziol. rast. genet.
2019, vol. 51, no. 4, 324-337

Full text and supplemented materials

Free full text: PDF  

References

1. Voytenko, L.V. & Kosakivska, I.V. (2016). Polyfunctional phytohormone abscisic acid. Visnyk Kharkiv. natsion. ahr. un-tu, 1, No. 37, pp. 27-41 [in Ukrainian].

2. Kosakivska, I.V. (2007). Environmental Direction in Plant Physiology: Achievements and Prospects. Fiziologiya i biokhimiya kult. rastenii, 39, No. 4, pp. 279-290 [in Ukrainian].

3. Kosakivska, I.V., Vasyuk, V.A. & Voytenko, L.V. (2018). Drought stress effects on growth characteristics of two relative weats Triticum aestivum L. and Triticum spelta L. Fiziol. rast. genet., 50, No. 3, pp. 241-252 [in Ukrainian]. https://doi.org/10.15407/frg2018.03.241

4. Kosakivska, I.V., Vasyuk, V.A. & Voytenko, L.V. (2019). Effects of exogenous abscisic acid on seed germination and morphological characteristics of two related wheats Triticum aestivum L. and Triticum spelta L. Fiziol. rast. genet., 51, No. 1, pp. 55-66 [in Ukrainian]. https://doi.org/10.15407/frg2019.01.055

5. Babenko, L.M., Hospodarenko, H.M., Rozhkov, R.V., Pariy, Ya.F., Pariy, M.F., Babenko, A.V. & Kosakivska, I.V. (2018).Triticum spelta L.: origin, biological characteristics and perspectives of use in breeding and agriculture. Regulatory Mechanisms in Biosystems, 8, No. 2, pp. 250-257 [in Ukrainian]. https://doi.org/10.15421/021837

6. Brestic, M., Zivcak, M., Hauptvoge, P., Misheva, S., Kocheva, K., Yang, X., Li, X. & Allakhverdiev, S.I. (2018). Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. Photosynthesis Research, 136, No. 2, pp. 245-255. https://doi.org/10.1007/s11120-018-0486-z

7. Bucker-Neto, L., Paiva, A.L.S., Machado, R.D., Arenhart, R.A. & Margis-Pinheiro, M. (2017). Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol., 40, pp. 373-386. https://doi.org/10.1590/1678-4685-gmb-2016-0087

8. Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R. & Abrams, S.R. (2010). Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol., 61, pp. 651-679. https://doi.org/10.1146/annurev-arplant-042809-112122

9. Deak, K.I. & Malamy, J. (2005). Osmotic regulation of root system architecture. Plant J., 43, pp. 17-28. https://doi.org/10.1111/j.1365-313X.2005.02425.x

10. Dominguez, P.G., Frankel, N., Mazuch, J., Balbo, I., Iusem, N., Fernie, A.R. & Carrari, F. (2013). ASR1 mediates glucose-hormone cross talk by affecting sugar trafficking in tobacco plants. Plant Physiol., 161, pp. 1486-1500. https://doi.org/10.1104/pp.112.208199

11. Duan, L., Dietrich, D., Ng, C.H., Chan, P.M.Y., Bhalerao, R., Bennett, M.J. & Dinnenya, J.R. (2013). Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell, 25, pp. 324-341. https://doi.org/10.1105/tpc.112.107227

12. Ehlert, C., Maurel, C., Tardieu, F. & Simonneau, T. (2009). Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiol., 150, pp. 1093-1104. https://doi.org/10.1104/pp.108.131458

13. Geiger, D., Maierhofer, T., Al-Rasheid, K.A., Scherzer, S., Mumm, P., Liese, A., Ache, P., Wellmann, C., Marten, I., Grill, E., Romeis, T. & Hedrich, R. (2011). Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal., 4 (173), ra32-ra32. https://doi.org/10.1126/scisignal.2001346

14. Hu, X., Liu, R., Li, Y., Wang, W., Tai, F., Xue, R. & Li, C. (2010). Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul., 60, pp. 225-235. https://doi.org/10.1007/s10725-009-9436-2

15. Islam, M.R., Baohua, F., Tingting, C., Longxing, T. & Guanfu, F. (2018a). Role of Abscisic Acid in Thermal Acclimation of Plants. J. Plant Biol., 61, pp. 255-264. https://doi.org/10.1007/s12374-017-0429-9

16. Islam, M.R., Feng, B., Chen, T., Fu, W., Zhang, C., Tao, L. & Fu, G. (2018b) Abscisic acid prevents pollen abortion under high temperature stress by mediating sugar metabolism in rice spikelets. Physiol. Plantarum, 165, No. 3, pp. 644-663. https://doi.org/10.1111/ppl.12759

17. Kim, T.H., Bohmer, M., Hu, H., Nishimura, N. & Schroeder, J.I. (2010). Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling. Annu. Rev. Plant Biol., 61, pp. 561-591. https://doi.org/10.1146/annurev-arplant-042809-112226

18. Kim, T.H. (2012). Plant Stress Surveillance Monitored by ABA and Disease Signaling Interactions. Mol. Cells, 33, pp. 1-7. https://doi.org/10.1007/s10059-012-2299-9

19. Liu, L.J., Cang, J., Yu, J., Wang, X., Huang, R., Wang, J. & Lu, B.W. (2013.). Effects of exogenous abscisic acid on carbohydrate metabolism and the expression levels of correlative key enzymes in winter wheat under low temperature. Biosci. Biotechnol. Biochem., 77, pp. 516-525. https://doi.org/10.1271/bbb.120752

20. Li, H., Liu, S.S., Yi, C.Y., Wang, F., Zhou, J., Xia, X.J., Shi, K., Zhou, Y.H. & Yu, J.Q. (2014). Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants. Plant Cell Environ., 37, pp. 2768-2780. https://doi.org/10.1111/pce.12360

21. Maurel, C., Boursiac, Y., Luu, D.T., Santoni, V., Shahzad, Z. & Verdoucq, L. (2015). Aquaporins in plants. Physiol. Rev., 95, pp. 1321-1358. https://doi.org/10.1152/physrev.00008.2015

22. Matsuoka, Y. & Nasuda, S. (2004). Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor. Appl. Genet., 109, pp. 1710-1717. https://doi.org/10.1007/s00122-004-1806-6

23. McAdam, S.A., Brodribb, T.J. & Ross, J.J. (2016). Shoot-derived abscisic acid promotes root growth. Plant Cell Environ., 39, pp. 652-659. https://doi.org/10.1111/pce.12669

24. Muhei, S.H. (2018). Seed Priming with Phytohormones to Improve Germination Under Dormant and Abiotic Stress Conditions. Adv. Crop Sci. Technol., 6, is. 6. https://doi.org/10.4172/2329-8863.1000403

25. Rook, F., Hadingham, S.A., Li, Y. & Bevan, M.W. (2006). Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ., 29, pp. 426-434. https://doi.org/10.1111/j.1365-3040.2005.01477.x

26. Saab, I.N., Sharp, R.E., Pritchard, J. & Voetberg, G.S. (1990). Increased endogenous abscisic acid maintains, primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol., 93, pp. 1329-1336. https://doi.org/10.1104/pp.93.4.1329

27. Ummenhofer, C.C. & Meehl, G.A. (2017). Extreme weather and climate events with ecological relevance. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 372, pp. 1-12. https://doi.org/10.1098/rstb.2016.0135

28. Vaieretti, M.V., Di'az, S., Vile, D. & Garnier, E. (2007). Two Measurement Methods of Leaf Dry Matter Content Produce Similar Results in a Broad Range of Species. Annals of Botany, 99, pp. 955-958. https://doi.org/10.1093/aob/mcm022

29. Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R., Kumar, Vivek, Verma, R., Upadhyay, R.G., Pandey, M. & Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front. Plant Sci., 8. https://doi.org/10.3389/fpls.2017.00161

30. Wilson, P.J., Thompson, K. & Hodgson, J.G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist., 143, pp. 155-162. https://doi.org/10.1046/j.1469-8137.1999.00427.x

31. Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167, pp. 313-324. https://doi.org/10.1016/j.cell.2016.08.029