Fiziol. rast. genet. 2019, vol. 51, no. 3, 187-206, doi:

Phytohormonal regulation of seed germination

Kosakivska I.V., Voytenko L.V., Vasyuk V.A., Vedenichova N.P., Babenko L.M., Shcherbatyuk M.M.

  • M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine 2 Tereshchenkivska St., Kyiv, 01601, Ukraine

The review focuses on the analysis of new information concerning the role of phytohormones in the regulation of dormancy and seed germination. It is noted that abscisic acid (ABA) and gibberellins (GA) belong to key endogenous factors, which determine the state of seeds. High endogenous ABA and low GA levels result in deep seed dormancy, while low ABA and high GA levels induce the beginning of germination. Changes in accumulation of key hormones and expression of key regulators during seed maturation and germination were discussed. In addition to ABA and GA all other phytohormones are also involved in modulation of seed dormancy and germination, including auxin, cytokinins, ethylene, brassinosteroids, jasmonic acid, salicylic acid, and strigolactones. The two major aspects of the ABA/GA balance regulation — the balance of hormone levels and the balance of the signaling cascades were analyzed. The accumulation of plant hormones can positively or adversely affect seed germination, while interacting with each other. While the activity of plant hormones is controlled by the expression of genes at different levels, there are plant genes that activated in the presence of specific plant hormones. We presented the scheme of auxin, cytokinins, ethylene, brassinosteroids, jasmonic acid, salicylic acid, and strigolactones involvement into regulation of seed germination processes through an integrated network of interaction with ABA and gibberellins. The influence of external factors on the hormonal system during germination of seeds and the participation of phytohormones in the formation of protective reactions for the effects of abiotic stresses are discussed. The state of the study of the role of the phytohormonal system in the regulation of germination processes of cereal grains was characterized. The possibilities and perspectives of the use of exogenous phytohormones for presowing priming of seeds are analyzed in order to regulate the intensity of physiological and metabolic processes and increase the stress resistance.

Keywords: phytohormone, abscisic acid, gibberellins, seeds, dormancy, germination, priming

Fiziol. rast. genet.
2019, vol. 51, no. 3, 187-206

Full text and supplemented materials

Free full text: PDF  


1. Bewley, J.D. & Black, M. (1994). Seeds: Physiology of Development and Germination. Berlin: Springer

2. Liu, A., Gao, F., Kanno, Y., Jordan, M., Kamiya, Y., Seo, M. & Ayele, B. (2013). Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PloS One, 8, e56570.

3. Chitnis, V.R., Gao, F., Yao, Z., Jordan, M.C., Park, S. & Ayele, B.T. (2014). After ripening induced transcriptional changes of hormonal genes in wheat seeds: the cases of brassinosteroids, ethylene, cytokinin and salicylic acid. PLoS One, 9:e87543.

4. Shu, K., Liu, X., Xie, Q. & He, Z. (2016). Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Mol. Plant., 69, pp. 34-45.

5. Santner, A., Calderon-Villalobos, L. & Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nature Chem. Biol., 5, pp. 301-307.

6. Miransari, M. & Smith, D.L. (2014). Plant hormones and seed germination. Environ. Exp. Bot., 99, pp. 111-123.

7. Graeber, K., Nakabayashi, K., Miatton, E., Leubner-Metzger, G. & Soppe, W. (2012). Molecular mechanisms of seed dormancy. Plant Cell Environ., 35 (10), pp. 1769-1786.

8. Kucera, B., Cohn, M.A. & Leubner-Metzger, G. (2005). Plant hormone interactions during seed dormancy release and germination. Seed Sci Res., 15, pp. 281-307.

9. Finkelstein, R.R., Reeves, W., Ariizumi, T. & Steber, C. (2008). Molecular aspects of seed dormancy. Ann. Rev. Plant Biol., 59, pp. 387-415.

10. Finch-Savage, W.E. & Footitt, S. (2017). Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J. Exp. Bot., 68, pp. 843-856.

11. Olds, C.L., Glennon, E.K.K. & Luckhart, S. (2018). Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes Infection., 20 (9-10), pp. 484-492.

12. Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R., Kumar, V., Verma, R., Upadhyay, R.G., Pandey, M. & Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in plant science, 8, pp. 161-173.

13. Chandrasekaran, U. & Liu, A. (2014). Endogenous abscisic acid signaling towards storage reserve filling in developing seed tissues of castor bean (Ricinus communis L.). Plant Growth Regul., 72, pp. 203-207.

14. Finkelstein, R.R. & Rock, C.D. (2002). Abscisic acid biosynthesis and response. The Arabidopsis Book/Eds. C.R. Somerville, E.M. Meyerowitz. Amer. Soc. Plant Biologists: Rockville, MD, pp. 137-155.

15. Graeber, K., Linkies, A., Muller, K., Wunchova, A., Rott, A. & Leubner-Metzger, G. (2010). Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Mol. Biol., 73, pp. 67-87.

16. Xiong, L. & Zhu, J.-K. (2003). Regulation of Abscisic acid Biosynthesis. Plant Physiol., 133 (1), pp. 29-36.

17. Tooro, P.E., Van Aelst, A.C. & Hilhors, H.W.M. (2000). The Second Step of the Biphasic Endosperm Cap Weakening that Mediates Tomato (Lycopersicon esculentum) Seed Germination is Under Control of ABA. J. Exp. Bot., 51 (349), pp. 1371-1379.

18. Humplik, J.F., Bergougnoux, V. & Van Volkenburgh, E. (2017). To Stimulate or Inhibit? That Is the Question for the Function of Abscisic Acid. Trends in Plant Science, 22 (10), pp. 830-841.

19. Lorrai, R., Boccaccini, A., Ruta, V., Possenti, M., Costantino, P. & Vittorioso, P. (2017). Abscisic acid inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin. AoB PLANTS, 10: ply061.

20. Lee, Y.-I., Chung, M.-C., Yeung, E.C. & Lee, N. (2015). Dynamic distribution and the role of abscisic acid during seed development of a lady's slipper orchid, Cypripedium formosanum. Annals of Botany, 116 (3), pp. 403-411.

21. Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.Y., Cutler, S.R., Sheen, J., Rodriguez, P.L. & Zhu, J.K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature, 462, pp. 660-664.

22. Ren, C. & Bewley, J.D. (1999). Developmental and Germinative Events can Occure Concurrently in Precociously Germinating Chinese Cabbage (Brassica rapa ssp. Pekinensis) Seeds. J. Exp. Bot., 50 (341), pp. 1751-1761.

23. Muller, K., Tintelnot, S. & Leubner-Metzger, G. (2006). Endosperm limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol., 47, pp. 864-877.

24. Kosakivska, I.V., Vasyuk, V.A. & Voytenko, L.V. (2019). Effects of exogenous abscisic acid on seed germination and morphological characteristics of two related wheats Triticum aestivum L. and Triticum spelta L. Fiziol. rast. genet., 51, No. 1, pp. 55-66 [in Ukrainian].

25. Nambara, E. & Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol., 56, pp. 165-185.

26. Martinez-Andujar, C., Ordiz, M.I., Huang, Z., Nonogaki, M., Beachy, R.N. & Nonogaki, H. (2011). Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy. Proc. Natl. Acad. Sci. USA, 108, pp. 17225-17229.

27. Behnam, B., Iuchi, S., Fujita, M., Fujita, Y., Takasaki, H., Osakabe, Y., Yamaguchi-Shinozaki, K., Kobayashi, M. & Shinozaki, K. (2013). Characterization of the promoter region of an arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Res., 20, pp. 315-324.

28. Park, S., Fung, P., Nishimura, N., Jensen, D., Fujii, H., Zhao, Y., Lumb, S., Santiago, J., Rodrigues, A., Chow, T., Alfred, S., Bonetta, D., Finkelstein, R., Provart, N., Desveaux, D., Rodriguez, P., McCourt, P., Zhu, J., Schroeder, J., Volkman, B. & Cutler, S. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324, pp. 1068-1071.

29. Liu, X., Yue, Y., Li, B., Nie, Y., Li, W., Wu, W.H. & Ma, L. (2007). A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science, 315, pp. 1712-1716.

30. Pandey, S., Nelson, D. & Assmann, S. (2009). Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell, 136 (1), pp. 136-148.

31. Shen, Y.Y., Wang, X.F., Wu, F.Q., Du, S.Y., Cao, Z., Shang, Y., Wang, X.L., Peng, C.C., Yu, X.C., Zhu, S.Y., Fan, R.C., Xu, Y.H. & Zhang, D.P. (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 443, pp. 823-826.

32. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. & Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 324, pp. 1064-1068.

33. Sponsel, V.M. & Hedden, P. (2010). Gibberellin Biosynthesis and Inactivation. Plant Hormones. Biosynthesis, Signal Transduction, Action/Ed. Davies P.J. Dordrecht: Springer, pp. 63-94.

34. Daviere, J.M. & Achard, P. (2013). Gibberellin signaling in plants. Development, 140 (6), pp. 1147-1151.

35. Gupta, R. & Chakrabarty, S. (2013). Gibberellic acid in plant. Plant Signal Behav., 8 (9): e25504. Published online 2013 Jun 28.

36. Tuan, P.A., Kumar, R., Rehal, P.K., Toora, P.K. & Ayele, B.T. (2018). Molecular Mechanisms Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination in Cereals. Frontiers in Plant Science, 9, pp. 1-14.

37. Gallardo, K., Job, C., Groot, P.C., Puype, M., Demol, H., Vandekerckhove J. & Job, D. (2002). Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin deficient seeds. Plant Physiol., 129, pp. 823-837.

38. Yamaguchi, S. (2008). Gibberellin metabolism and its regulation. Ann Rev Plant Biol., 59, pp. 225-251.

39. Gubler, F., Kalla, R., Roberts, J.K. & Jacobsen, J.V. (1995). Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell., 7 (11), pp. 1879-1891.

40. Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y. & Yamaguchi, S. (2003). Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell, 15, pp. 1591-1604.

41. Fincher, G.B. (1989). Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, pp. 305-346.

42. Kaneko, M., Itoh, H., Inukai, Y., Sakamoto, T., Ueguchi-Tanaka, M. & Ashikari, M. (2003). Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J., 35, pp. 104-115.

43. Gubler, F., Chandler, P.M., White, R.G., Llewellyn, D.J. & Jacobsen, J.V. (2002). Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol., 129, pp. 191-200.

44. Voegele, A., Linkies, A., Muller, K. & Leubner-Metzger, G. (2011). Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. J Exp. Bot., 62 (14), pp. 5131-5147.

45. Shu, K., Zhang, H., Wang, S., Chen, M., Wu, Y., Tang, S., Liu, C., Feng, Y., Cao, X. & Xie, Q. (2013). ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet., 9 (6), e1003577.

46. Yamauchi, Y., Takeda-Kamiya, N., Hanada, A., Ogawa, M., Kuwahara, A., Seo, M., Kamiya, Y. & Yamaguchi, S. (2007). Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds. Plant Cell Physiol., 48, pp. 555-561.

47. Lee, S., Cheng, H., King, K.E., Wang, W., He, Y., Hussain, A., Lo, J., Harberd, N.P. & Peng, J. (2002). Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev., 16, pp. 646-658.

48. Seo, M., Hanada, A., Kuwahara, A., Endo, A., Okamoto, M., Yamauchi, Y., North, H., Marion-Poll, A., Sun, T.P. & Koshiba, T. (2006). Regulation of hormone metabolism in Arabidopsis seeds phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J., 48, pp. 354-366.

49. Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y. & Lopez-Molina, L. (2008). The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell, 20, pp. 2729-2745.

50. Izydorczyk, C., Nguyen, T.-N., Jo, S., Son, S., Tuan, P.A. & Ayele, B.T. (2017). Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signaling mediates the effects of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L.). Plant Cell Environ., 41, pp. 1022-1037.

51. Gubler, F., Hughes, T., Waterhouse, P. & Jacobsen, J. (2008). Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiol., 147, pp. 886-896.

52. Ishibashi, Y., Kasa, S., Sakamoto, M., Aoki, N., Kai, K. & Yuasa, T. (2015). A role for reactive oxygen species produced by NADPH oxidases in the embryo and aleurone cells in barley seed germination. PLoS One, 10, e0143173.

53. Bassel, G.W., Lan, H., Glaab, E., Gibbs, D.J., Gerjets, T., Krasnogor, N., Bonner, A.J., Holdsworth, M.J. & Provart, N.J. (2011). Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc. Natl. Acad. Sci. USA, 108 (23), pp. 9709-9714.

54. Vishal, B. & Kumar, P.P. (2018). Regulation of Seed Germination and Abiotic Stresses by Gibberellins and Abscisic Acid. Frontiers in Plant Science, 9, pp. 1-15.

55. Enders, T.A. & Strader, L.C. (2015). Auxin activity: past, present, and future. Amer. J. Botany, 102 (2), pp. 180-196.

56. Wang, L., Hua, D., He, J., Duan, Y., Chen, Z., Hong, X. & Gong, Z. (2011). Auxin Response Factor 2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet., 7 (7), e1002172.

57. Belin, C., Megies, C., Hauserova, E. & Lopez-Molina, L. (2009). Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell, 21 (8), pp. 2253-2268.

58. Pieruzzi, F.P., Dias, L.L.C., Balbuena, T.S., Santa-Catarina, C., dos Santos, A.L.W. & Floh, E.I.S. (2011). Polyamines, IAA and ABA during germination in two recalcitrant seeds: Araucaria angustifolia (Gymnosperm) and Ocotea odorifera (Angiosperm). Ann. Bot., 108, pp. 337-345.

59. Dias, L.L.C., Santa-Catarina, C., Silveira, V., Pieruzzi, F.P. & Floh, E.I.S. (2009). Polyamines, amino acids, IAA and ABA contents during Ocotea catharinensis seed germination. Seed Science and Technology, 37 (1), pp. 42-51.

60. Santa-Catarina, C., Silveira, V., Balbuena, T.S., Maranhao, M.E.E., Handro, W. & Floh, E.I.S. (2006). IAA, ABA, polyamines and free amino acids associated with zygotic embryo development of Ocotea catharinensis. Plant Growth Regul., 49, pp. 237-247.

61. Park, J., Kim, Y.S., Kim, S.G., Jung, J.H., Wo, J.C. & Park, C.M. (2011). Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol., 156, pp. 537-549.

62. Ramaih, S., Guedira, M. & Paulsen, G.M. (2003). Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Funct. Plant Biol., 30, pp. 939-945.

63. Liu, X., Zhang, H., Zhao, Y., Feng, Z., Li, Q., Yang, H.Q., Luan, S., Li, J. & He, Z.H. (2013). Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc. Natl. Acad. Sci. USA, 110, pp. 15485-15490.

64. Hentrich, M., Boettcher, C. & Duchting, P. (2013). The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J., 74, pp. 626-637.

65. Friml, J., Wisniewska, J., Benkova, E., Mendgen, K. & Palme, K. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415, pp. 806-809.

66. Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz H., Hamann, T., Offringa, R. & Jurgens, G. (2003). Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature, 426 (6363), pp. 147-153.

67. Friml, J., Yang, X., Michniewicz, M., Weijers, D., Quint, A., Tietz, O., Benjamins, R., Ouwerkerk, P.B., Ljung, K., Sandberg, G., Hooykaas, P.J., Palme, K. & Offringa, R. (2004). A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science, 306 (5697), pp. 862-865.

68. Michniewicz, M., Zago, M.K., Abas, L., Weijers, D., Schweighofer, A., Meskiene, I., Heisler, M.G., Ohno, C., Zhang, J., Huang, F., Schwab, R., Weigel, D., Meyerowitz, E.M., Luschnig, C., Offringa, R. & Friml, J. (2007). Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell., 130, pp. 1044-1056.

69. Dhonukshe, P., Tanaka, H., Goh, T., Ebine, K., Mahonen, A.P., Prasad, K., Blilou, I., Geldner, N., Xu, J., Uemura, T., Chory, J., Ueda, T., Nakano, A., Scheres, B. & Friml, J. (2008). Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature, 456 (7224), pp. 962-966.

70. Vedenicheva, N.P. & Kosakivska, I.V. (2017). Cytokinins as regulators of plant ontogenesis under different growth conditions. Kyiv: Nash Format [in Ukrainian].

71. Nonogaki, H. (2018). Seed germination and dormancy - the classic story, new puzzles, and evolution. J. of Integrative. Plant Biology, 40, pp. 1-23. 10.1111/jipb.12762

72. Stirk, W.A., Novak, O., Zizkova, E., Motyka, V., Strnad, M. & van Staden, J. (2012). Comparison of endogenous cytokinins and cytokinin oxidase/dehydrogenase activity in germinating and thermoinhibited Tagetes minuta achenes. J. Plant Physiol., 169 (7), pp. 696-703.

73. Stirk, W.A., Vaclavikova, K., Novak, O. & Gajdosova, S. (2012). Involvement of cis-zeatin, dihydrozeatin, and aromatic cytokinins in germination and seedling establishment of maize, oats, and lucerne. J. Plant Growth Regul., 31, pp. 392-405.

74. Wang, Y., Li, L., Ye, T., Zhao, S., Liu, Z., Feng, Y.Q. & Wu, Y. (2011). Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant J., 68 (2), pp. 249-261.

75. Guan, C., Wang, X., Feng, J., Hong, S., Liang, Y., Ren, B. & Zuo, J. (2014). Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive 5 protein in Arabidopsis. Plant Physiol., 164, pp. 1515-1526.

76. Heyl, A., Riefler, M., Romanov, G. & Schmulling, T. (2012). Properties, functions and evolution of cytokinin receptors. Eur. J. Cell Biol., 91, pp. 246-256.

77. Subbiah, V. & Reddy, K.J. (2010). Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. J. Biosci., 35, pp. 451-458.

78. Liu, Y.Y. & Zang, D.K. (2016). Effects of hormone balance on Korean Hackberry seed germination. Africal Journal of Agricultural Research., 11 (29), pp. 2650-2657.

79. Lopes, P.S., Munne-Bosch, S. & Garcia, Q.S. (2017). Hormonal profile and the role of cell expansion in the germination control of Cerrado biome palm seeds. Plant Physiol. and Biochem., 118, pp. 168-177.

80. Bicalho, E.M., Pinto-Marijuan, M., Muller, M., Morales, M., Munne-Bosch, S. & Garcia, Q.S. (2015). Control of macaw palm seed germination by gibberellin/abscisic acid balance. Plant Biol., 17, pp. 990-996.

81. Goggin, D.E., Emery, R.J., Kurepin, L.V. & Powles, S.B. (2014). A potential role for endogenous microflora in dormancy release, cytokinin metabolism and the response to fluridone in Lolium rigidum seeds. Ann. Bot., 115 (2), pp. 293-301.

82. Chiwocha, S.D., Cutler, A.J., Abrams, S.R., Ambrose, S.J. & Yang, J. (2005). The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J., 42 (1), pp. 35-48.

83. Lotfi, N., Soleimani, A., Vahdati, K. & Cakmakci, R. (2019). Comprehensive biochemical insights into the seed germination of walnut under drought stress. Scientia Horticulturae, 250, pp. 329-343.

84. Arteca, R. & Arteca, J. (2008). Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J. Exp. Bot., 59 (11), pp. 3019-3026.

85. Zapata, P.J., Serrano, M., Pretel, M.T., Amoros, A. & Botella, M.A. (2004). Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci., 167, pp. 781-788.

86. Bleecker, A.B. & Kende, H. (2000). Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol., 16 (16), pp. 1-18.

87. Kendrick, M.D. & Chang, C. (2008). Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol., 11, pp. 479-485.

88. Cheng, W.H., Chiang, M.H., Hwang, S.G. & Lin, P.C. (2009). Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol. Biol., 71 (1-2), pp. 61-80.

89. Linkies, A., Muller, K., Morris, K., Tureckova, V., Wenk, M., Cadman, C.S., Corbineau, F., Strnad, M., Lynn, J.R. & Finch-Savage, W.E. (2009). Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell, 21, pp. 3803-3822.

90. Wilson, R.L., Kim, H., Bakshi, A. & Binder, B.M. (2014). The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress. Plant Physiol., 165, pp. 1353-1366.

91. Arc, E., Sechet, J., Corbineau, F., Rajjou, L. & Marion-Poll, A. (2013). ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci., 4, pp. 1-19.

92. Corbineau, F., Xia, Q., Bailly, C. & El-Maarouf-Bouteau, H. (2014). Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci., 5, pp. 539.

93. Kepczynski, J. & Kepczynska, E. (1997). Ethylene in seed dormancy and germination. Physiol. plant., 101, pp. 720-726.

94. Arora, N., Bhardwaj, R., Sharma, P. & Arora, H. (2008). Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol Plant., 30, pp. 833-839.

95. Khripach, V., Zhabinskii, V. & Groot, A.D. (2000). Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for XXI century. Ann Bot., 86, pp. 441-447.

96. Zhang, S., Cai, Z. & Wang, X. (2009). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Nat Acad. Sci. USA, 1106, pp. 4543-4548.

97. Hu, Y. & Yu, D. (2014). BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell, 26, pp. 4394-4408.

98. Steber, C.M. & McCourt, P. (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiol., 125, pp. 763-769.

99. Finch-Savage, W. & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytol., 171, pp. 501-523.

100. Leubner-Metzger, G. (2001). Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta, 213, pp. 758-763.

101. Leubner-Metzger, G. (203). Brassinosteroids promote seed germination. Brassinosteroids. S.Hayat and A.Ahmad (eds.). Kluwer: Academic Publishers, pp. 119-128.

102. Kunes, I., Balas, M., Linda, R., Gallo, J. & Novbkovb, O. (2016). Effects of brassinosteroid application on seed germination of Norway spruce, Scots pine, Douglas fir and English oak. Forest., 10, pp. 121-127.

103. Cukor, J., Rapbkov, N.M., Linda, R., Linhart, L., Gutsch, M.R. & Kunep, I. (2018). Effects of Brassinosteroid Application on Seed Germination of Scots Pine under Standard and Heat Stress Conditions. Baltic Forestry, 24 (1), pp. 60-67.

104. Karpets, Yu.V., Kolupaev, Yu.E. & Kosakivska, I.V. (2016). Nitric oxide and hydrogen peroxide as signal mediators at induction of heat resistance of wheat plantlets by exogenous jasmonic and salicylic acids. Fiziol. rast. genet., 48, No. 2, pp. 158-166 [in Ukrainian].

105. Xie, Z., Zhang, Z.L., Hanzlik, S., Cook, E. & Shen, Q.J. (2007). Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid inducible WRKY gene. Plant Mol. Biol., 64 (3), pp. 293-303.

106. Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C. & Job, D. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiol., 141, pp. 910-923.

107. Guan, L. & Scandalios, J.G. (1995). Developmentally related responses of maize catalase genes to salicylic acid. Proc. Natl. Acad. Sci. USA, 92, pp. 5930-5934.

108. Lee, S., Kim, S.G. & Park, C.M. (2010). Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol., 188, pp. 626-637.

109. Alonso-Ramirez, A., Rodriguez, D., Reyes, D., Jimenez, J.A., Nicolas, G., Lopez-Climent, M., Gomez-Cadenas, A. & Nicolas, C. (2009). Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol., 150, pp. 1335-1344.

110. Rivas-San Vicente, M. & Plasencia, J. (2011). Salicylic Acid beyond Defence: Its Role in Plant Growth and Development. J. Exp. Bot., 62, pp. 3321-3338.

111. Dempsey, A.D. & Klessig, D.F. (2017). How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology, 15 (23), pp. 1-11.

112. Babenko, L.M., Kosakivska, I.V. & Skaterna, T.D.(2015). Jasmonic acid: role in biotechnology and the regulation of plants biochemical processes. Biotechnologia Acta, 8 (2), pp. 35-51.

113. Babenko, L.M., Shcherbatiuk, M.M., Skaterna, T.D. & Kosakivska, I.V. (2017). Lipoxygenases and their metabolites in formation of plant stress tolerance. Ukr. Biochem. J., 89 (1), pp. 5-21.

114. Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot., 100, pp. 681-669.

115. Chini, A., Gimenez-Ibanez, S., Goossens, A. & Solano, R. (2016). Redundancy and specificity in jasmonate signaling. Curr. Opin. Plant Biol., 33, pp. 147-156.

116. Wasternack, C. & Strnad, M. (2016). Jasmonate signaling in plant stress responses and development - active and inactive compounds. New Biotechnology, 33, pp. 604-613.

117. Nambara, E., Okamoto, M., Tatematsu, K., Yano, R., Seo, M. & Kamiya, Y. (2010). Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res., 20, pp. 55-67.

118. Jacobsen, J.V., Barrero, J.M., Hughes, T., Julkowska, M., Taylor, J.M., Xu, Q. & Gubler, F. (2013). Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). Planta, 238, pp. 121-138.

119. Fernandez-Arbaizar, A., Regalado, J.J. & Lorenzo, O. (2012). Isolation and characterization of novel mutant loci suppressing the ABA hypersensitivity of the Arabidopsis coronatine insensitive 1-16 (coi1-16) mutant during germination and seedling growth. Plant Cell Physiol., 53, pp. 53-63.

120. Yildiz, K., Muradoglu, F. & Yilmaz, H. (2008). The effect of jasmonic acid on germination of dormant and nondormant pear (Pyrus communis L.) seeds. Seed Sci. Technol., 36, pp. 569-574.

121. Norastehnia, A., Sajedi, R.H. & Nojavan-Asghari, M. (2007). Inhibitory effects of methyl jasmonate on seed germination in maize (Zea mays): effect on a-amylase activity and ethylene production. Gen. Appl. Plant. Physiol., 33 (1-2), pp. 13-23.

122. Hassini, I., Baenas, N., Moreno, D.A., Carvajal, M., Boughanmi, N. & Martinez Ballesta, M.D.C. (2017). Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of Brassica oleracea var. capitata (white and red varieties) sprouts. J. Sci. Food Agric., 97, pp. 2291-2299.

123. Mishra, S., Upadhyay, S. & Shukla, R.K. (2017). The Role of Strigolactones and Their Potential Cross-talk under Hostile Ecological Conditions in Plants. Front. Physiol., 7, pp. 691-720.

124. Toh, S., Kamiya, Y., Kawakami, N., Nambara, E., McCourt, P. & Tsuchiya, Y. (2012). Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol., 53, pp. 107-117.

125. Stanga, J.P., Smith, S.M., Briggs, W.R. & Nelson, D.C. (2013). SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiol., 163, pp. 318-330.

126. Jiang, L., Liu, X., Xiong, G., Liu, H., Chen, F., Wang, L., Meng, X., Liu, G., Yu, H., Yuan, Y., Yi, W., Zhao, L., Ma, H., He, Y., Wu, Z., Melcher, K., Qian, Q., Xu, H., Wang, Y. & Li, J. (2013). DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 504, pp. 401-405.

127. Zhou, F., Lin, Q., Zhu, L., Ren, Y., Zhou, K., Shabek, N., Wu, F., Mao, H., Dong, W., Gan, L., Ma, W., Gao, H., Chen, J., Yang, C., Wang, D., Tan, J., Zhang X., Guo, X., Wang, J., Jiang, L., Liu, X., Chen, W., Chu, J., Yan, C., Ueno, K., Ito, S., Asami, T., Cheng, Z., Wang, J., Lei, C., Zhai, H., Wu, C., Wang, H., Zheng, N. & Wan, J. (2013). D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 504, pp. 406-410.

128. Cho, J.N., Ryu, J.Y., Jeong, Y.M., Park, J., Song, J.J., Amasino, R.M., Noh, B. & Noh, Y.S. (2012). Control of seed germination by light-induced histone arginine demethylation activity. Dev. Cell., 22 (4), pp. 736-748.

129. Barrero, J.M., Downie, A.B., Xu, Q. & Gubler, F. (2014). A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination. Plant Cell, 26 (3), pp. 1094-10104.

130. Footitt, S., Douterelo-Soler, I., Clay, H. & Finch-Savage, W.E. (2011). Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc. Natl. Acad. Sci. USA. 108, pp. 20236-20241.

131. Kendall, S.L., Hellwege, A., Marriot, P., Whalley, C., Graham, I.A. & Penfield, S. (2011). Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell., 23, pp. 2568-2580.

132. MacGregor, D.R., Kendall, S.L., Florance, H., Fedi, F., Moore, K., Paszkiewicz, K., Smirnoff, N. & Penfield, S. (2015). Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytol., 205, pp. 642-652.

133. Xi, W., Liu, C., Hou, X. & Yu, H. (2010). Mother of FT and TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell, 22 (6), pp. 1733-1748.

134. Nakamura, S., Abe, F., Kawahigashi, H., Nakazono, K., Tagir, A., Matsumoto, T., Utsugi, S., Ogawa, T., Handa, H., Ishida, H., Mori M., Kawaura, K., Ogihara, Y. & Miura, H. (2011). A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell, 23, pp. 3215-3229.

135. Muhei, S.H. (2018). Seed Priming with Phytohormones to Improve Germination Under Dormant and Abiotic Stress Conditions. Adv. Crop Sci. Tech., 6 (6), pp. 403-409.

136. Chauhan, J.S., Tomar, Y.K., Singh, I.N., Ali, S. & Debarati, A. (2009). Effect of growth hormones on seed germination and seedling growth of black gram and horse gram. J. Amer. Sci., 5 (5), pp. 79-84.

137. Iqbal, M. & Ashraf, M. (2013). Gibberellic acid mediated induction of salt tolerance in wheat plants: growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ. Exp. Bot., 86, pp. 76-85.

138. Yang, L., Hong, X.U., Xiao-Xia, W.E.N., Yun-Cheng, L. Liu, Y., Wen, X., Xu, H. & Yun-Cheng, L. (2016). Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates. J. Integr. Agr., 15 (12), pp. 2759-2774.

139. Yuan, Z., Wang, C., Li, S., Li, X. & Tai, F. (2014). Effects of different plant hormones or PEG seed soaking on maize resistance to drought stress. Canad. J. Plant Sci., 94, pp. 1491-1499.

140. Sneideris, L.C., Gavassi, M.A., Campos, M.L., D'Amico-Damiao, V. & Carvalho, R.F. (2015). Effects of hormonal priming on seed germination of pigeon pea under cadmium stress. Anais da Academia Brasileira de Ciencias, 87 (3), pp. 1847-1852.