Using allele-specific primers, the allelic state of the Glu-A3, Glu-B3, Glu-D3 loci of 35 soft wheat varieties was determined by PCR-analysis. Two alleles were detected in the Glu-A3 locus: Glu-A3d, Glu-A3c; Glu-A3c allele prevailed. Four alleles were identified in the Glu-B3 locus: Glu-B3b, Glu-B3j, Glu-B3g, Glu-B3d, the allele Glu-B3b predominated. The index of sedimentation in the investigated samples was determined. In samples that had the allele Glu-B3g, the average sedimentation index was 85, in samples having an allele of Glu-B3b, 80. The alleles of the Glu-B3 locus can be divided according to their effect on the sedimentation index: g > b > j.
Keywords: soft winter wheat, PCR-analysis, low molecular weight glutenins loci
Full text and supplemented materials
Free full text: PDFReferences
1. Konarev, V.G. (1980). Wheat proteins. M.: Kolos [in Russian].
2. Polischuk, A.M., Chebotar, S.V., Blagodarova, O.M., Kozub, N.O., Sozinov, I.O. & Sivolap, Yu.A. (2010). Analysis of varieties and almost isogenic soft wheat lines by PCR with allelic specific primers for Gli-1 and Glu-3 lucas. Tsitologiya i genetika, No. 6, pp. 22-31[in Ukrainian].
3. Починок В.М., Маменко Т.П., Тарасюк О.І. та ін. Сучасний стан селекції пшениці озимої на якість зерна // Матеріали VI Міжнар. наук. конф. «Селекційно-генетична наука і освіта», (м. Умань, 15–17 березня 2017 р.). — Умань, 2017. — С. 205—209.
4. Pochynok V.M. & Radchenko O.M. (2011). Current state of research of wheat spare wheat. Fiziologiya i biohimiya kulturnyih rasteniy, 43, No 3, pp. 225-266[in Ukrainian].
5. Rybalka, A.I., Morgun B.V. & Pochynok V.M. (2012). Contemporary researches on the quality of wheat grain in the world: genetics, biotechnology and nutritional value of spare proteins.
6. Rybalka, A.I. (2011). Wheat quality and its improvement. K.:Logos [in Ukrainian].
7. Cornish, G.B., Skylas, D.J., Siriamornpun, S. & Ferenc, B. (2001). Grain proteins as markers of genetic traits in wheat. Australian Journal of Agricultural Research, 52, pp. 1161-1171. https://doi.org/10.1071/AR01054
8. Gupta, R.B. & Shepherd, K.W. (1990). Two-step one-dementional SDS-PAGE analysis of LMW subunits of glutenin. I. Variation and genetic control of the subunits in hexaploid wheats. Theoretical and Applied Genetics, 80, pp. 65-74. https://doi.org/10.1007/BF00224017
9. Hongqi, Si, Manli, Zhao., Fuxia, He. & Chuanxi, Ma. (2013). Effect of Glu-B3 allelic variation on sodium dodecyl sulfate sedimentation volume in common wheat (Triticum aestivum L.). Scientific world Journal, pp. 1-5.
10. Payne, P.I., Nightingale, M.A., Krattinger, A.F. & Holt, L.M. (1987). The relationship between HMW glutenin subunit composition and bread-making quality of British grown wheat varieties. Journal o the Science Food Agriculture, 40, pp. 51-65. https://doi.org/10.1002/jsfa.2740400108
11. Wang, L., Li, G., Pena, R., Xia, X. & He, Zh. (2010). Development of STS marker and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.). Journal of Cereal Science, 51, pp. 305-312. https://doi.org/10.1016/j.jcs.2010.01.005
12. Wang, L., Zhao, X., He, Z., Ma,W., Appels, R., Pena, R.J. & Xia, X.S. (2009). Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of STS markers in common wheat (Triticum aestivum L.). Theor. Appl. Genet., 118, pp. 525-539. https://doi.org/10.1007/s00122-008-0918-9
13. Wang, L., Zhen, S., Luo, N., Han, C., Lu, X., Xia, X., He, Z. & Yan, Y. (2016). Low molecular weight glutenin subunit gene Glu-B3h confers superior dough strength and breadmaking quality in wheat (Triticum aestivum L.). Scientific report., pp. 1—12. https://doi.org/10.1038/srep27182
14. Zhang, W., Gianibelli, M., Ma, W., Rampling, L. & Gale, KR. (2003). Identification of SNPs and development of AS-PCR markers for gliadin alleles in Triticum aestivum // Theor. Appl. Genet. 107. Pp. 130-138. https://doi.org/10.1007/s00122-003-1223-2
15. Zhao, X., Zhao, X. & Xia, Z. Novel DNA variations to characterise low molecular weight glutenin Glu-D3 genes and develop STS markers in common wheat. Theor. Appl. Genet., 114, pp. 451-460. https://doi.org/10.1007/s00122-006-0445-5