Fiziol. rast. genet. 2017, vol. 49, no. 1, 15-24, doi: https://doi.org/10.15407/frg2017.01.015

Varietal peculiarities of nitrogen remobilization from the vegetative parts of wheat shoot under different levels of mineral nutrition

Kiriziy D.A., Ryzhikova P.L.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

Plants of three winter wheat varieties (Favoritka, Smuglianka, Mironovskaya 808) were grown in a pot experiment on two levels of mineral nutrition — N160P160K160 and N32P32K32 mg/kg of soil. In the phase of flowering and at full ripeness dry weight of the main shoot organs, their nitrogen content, elements of grain productivity and grain nitrogen content were determined. Ratios of nitrogen remobilization during grain filling for the whole shoot and its individual parts have been calculated. It was shown that in new winter wheat varieties Favoritka and Smuglianka efficiency of nitrogen remobilization from vegetative parts to the grain was higher than in the old variety Mironovskaya 808 plants. Under low level of mineral nutrition remobilization ratios were less, but new varieties retain an advantage in this index. At the high level of mineral nutrition varieties Favoritka and Smuglianka used stem nitrogen better than Mironovskaya 808.

Keywords: Triticum aestivum L., wheat, mineral nutrition, nitrogen, remobilization

Fiziol. rast. genet.
2017, vol. 49, no. 1, 15-24

Full text and supplemented materials

Free full text: PDF  

References

1. Kiriziy, D.A., Stasik, O.O., Pryadkina, G.A. & Shadchina, T.M. (2014). Photosynthesis. Vol. 2. Assimilation of CO2 and the mechanisms of its regulation. Kyiv: Logos [in Russian].

2. Morgun, V.V., Sanin, Y.V. & Schwartau, V.V. (2015). The club 100 centners. Kyiv: Logos [in Ukrainian].

3. Morgun, V.V., Schwartau, V.V. & Kiriziy, D.A. (2010). Physiological fundamentals of grain cereals high productivity forming. Fiziol. biokhim. kult. rast., 42, No. 5, pp. 371-392 [in Russian].

4. Pavlov, A.N. (1982). Physiological factors that determine the level of protein accumulation in the grain of different wheat genotypes. Plant Physiology, 24, No. 4, pp. 767-780 [in Russian].

5. Pochinok, V.M. & Kirizy, D.A. (2010). Productivity and quality of wheat grain in relation with the peculiarities of nitrogen distribution in plant. Fiziol. biokhim. kult. rast., 42, No. 5, pp. 393-402 [in Ukrainian].

6. Pochinok, Kh.N. (1976). Methods of biochemical analysis of plants. Kyiv: Nauk. Dumka [in Russian].

7. Allard, V., Martre, P. & Gouis, J. (2013). Genetic variability in biomass allocation to roots in wheat is mainly related to crop tillering dynamics and nitrogen status. Eur. J. Agr., 46, pp. 68-76. https://doi.org/10.1016/j.eja.2012.12.004

8. Aranjuelo, I., Cabrera-Bosquet, L., Araus, J.L. & Nogues, S. (2013). Carbon and nitrogen partitioning during the post-anthesis period is conditioned by N fertilisation and sink strength in three cereals. Plant Biol., 15, No. 1, pp. 135-143. https://doi.org/10.1111/j.1438-8677.2012.00593.x

9. Barbottin, A., Lecomte, C., Bouchard, C. & Jeuffroy, M.H. (2005). Nitrogen remobilization during grain filling in wheat: Genotypic and environmental effects. Crop Sci., 45, No. 3, pp. 1141-1150. https://doi.org/10.2135/cropsci2003.0361

10. Barraclough, P.B., Lopez-Bellido, R. & Hawkesford, M.J. (2014). Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat. Field Crops Res., 156, pp. 242-248. https://doi.org/10.1016/j.fcr.2013.10.004

11. Bertheloot, J., Andrieu, B., Fournier, C. & Martre, P. (2008). A process-based model to simulate nitrogen distribution in wheat (Triticum aestivum) during grain-filling. Funct. Plant Biol., 35, No. 9-10, pp. 781-796. https://doi.org/10.1071/FP08064

12. Bertheloot, J., Martre, P. & Andrieu, B. (2008). Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiol., 148, No. 3, pp. 1707-1720. https://doi.org/10.1104/pp.108.124156

13. Cormier, F., Faure, S., Dubreuil, P. Heumez, E., Beauchene, K., Lafarge, S., Praud, S. & Le Gouis, J. (2013). A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor. Appl. Genet., 126, No. 12, pp. 3035-3048. https://doi.org/10.1007/s00122-013-2191-9

14. Diekmann, F. & Fischbeck, G. (2005). Differences in wheat cultivar response to nitrogen supply. II. Differences in N-metabolism-related traits. J. Agr. Crop Sci., 191, No. 5, pp. 362-376. https://doi.org/10.1111/j.1439-037X.2005.00166.x

15. Dordas, C. (2009). Dry matter, nitrogen and phosphorus accumulation, partitioning and remobilization as affected by N and P fertilization and source-sink relations. Eur. J. Agr., 30, No. 2, pp. 129-139. https://doi.org/10.1016/j.eja.2008.09.001

16. Gaju, O., Allard, V., Martre, P. Le Gouis, J., Moreau, D., Bogard, M., Hubbart, S. & Foulkes, M.J. (2014). Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Res., 155, pp. 213-223. https://doi.org/10.1016/j.fcr.2013.09.003

17. Gooding, M.J., Gregory, P.J., Ford, K.E. & Pepler, S. (2005). Fungicide and cultivar affect post-anthesis patterns of nitrogen uptake, remobilization and utilization efficiency in wheat. J. Agr. Sci., 143, pp. 503-518. https://doi.org/10.1017/S002185960500568X

18. Kade, M.A., Barneix, J., Olmos, S. & Dubcovsky, J. (2005). Nitrogen uptake and remobilization in tetraploid 'Langdon' durum wheat and a recombinant substitution line with the high grain protein gene Gpc-B1. Plant Breed., 124, No. 4, pp. 343-349. https://doi.org/10.1111/j.1439-0523.2005.01110.x

19. Kindred, D.R. & Gooding, M.J. (2004). Heterotic and seed rate effects on nitrogen efficiencies in wheat. J. Agr. Sci., 142, pp. 639-657. https://doi.org/10.1017/S0021859605004843

20. Kong, L.G., Wang, F.H. & Zhang, R.T. (2012). High nitrogen rate inhibits proteolysis and decreases the export of leaf pre-stored proteins to grains in wheat (Triticum aestivum). Int. J. Agr. Biol., 14, No. 6, pp. 1009-1013.

21. Muurinen, S., Kleemola, J. & Peltonen-Sainio, P. (2007). Accumulation and translocation of nitrogen in spring cereal cultivars differing in nitrogen use efficiency. Agr. J., 99, No. 2, pp. 441-449. https://doi.org/10.2134/agronj2006.0107

22. Shi, R.L., Tong, Y.P., Jing, R.L. Zhang, F. & Zou, C. (2013). Characterization of quantitative trait loci for grain minerals in hexaploid wheat (Triticum aestivum L.). J. Integr. Agricult., 12, No. 9, pp. 1512-1521. https://doi.org/10.1016/S2095-3119(13)60559-6

23. Triboi, E., Martre, P. & Girousse, C. (2006). Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat. Eur. J. Agr., 25, No. 2, pp. 108-118. https://doi.org/10.1016/j.eja.2006.04.004

24. Vaguseviciene, I., Burbulis, N., Jonytiene, V. & Vasinauskiene, R. (2012). Influence of nitrogen fertilization on winter wheat physiological parameters and productivity. J. Food Agricult. Environ., 10, No. 3-4, pp. 733-736.

25. Wang, H., McCaig, T.N., DePauw, R.M. & Clarke, J.M. (2008). Flag leaf physiological traits in two high-yielding Canada Western Red Spring wheat cultivars. Can. J. Plant Sci., 88, No. 1, pp. 35-42. https://doi.org/10.4141/CJPS07055

26. Wang, Z.J., Wang, J.H. & Zhao, C.J. (2005). Vertical distribution of nitrogen in different layers of leaf and stem and their relationship with grain quality of winter wheat. J. Plant Nutr., 28, No. 1, pp. 73-91. https://doi.org/10.1081/PLN-200042175

27. Xu, Z.Z., Yu, Z.W., Wang, D. & Zhang, Y.L. (2005). Nitrogen accumulation and translocation for winter wheat under different irrigation regimes. J. Agr. Crop Sci., 191, No. 6, pp. 439-449. https://doi.org/10.1111/j.1439-037X.2005.00178.x

28. Zhang, Y.-H., Sun, N.-N., Hong, J.-P., Zhang, Q., Wang, C., Xue, Q.-W., Zhou, S.-L., Huang, Q. & Wang, Z.-M. (2014). Effect of source-sink manipulation on photosynthetic characteristics of flag leaf and the remobilization of dry mass and nitrogen in vegetative organs of wheat. J. Integr. Agricult., 13, No. 8, pp. 1680-1690. https://doi.org/10.1016/S2095-3119(13)60665-6