Fiziol. rast. genet. 2017, vol. 49, no. 4, 321-327, doi: https://doi.org/10.15407/frg2017.04.321

COMPARATIVE EVALUATION OF FRUCTAN CONTENT IN ARTEMISIA spp. «HAIRY» ROOTS AND PLANTS

Duplij V.P., Drobot K.A., Ratushnyak Ya.I., Matvieieva N.A.

  • Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Academika Zabolotnogo St., Kyiv, 03680, Ukraine

It was carried out a comparative assessment of polifructan content in transgenic roots and control plants Artemisia annua, A. tilesii, A. dracunculus, A. ludoviciana, A. absinthium. For this purpose two simple methods of data visualization were used. Variability of studied parameter depending on the gradation of each experimental factor (species, genetic vector/part of plant, collection sample) was demonstrated by the plot design method. Volatility of fructan content depended of each of the this factors was shown by Cleveland dot plots. The highest content of fructans was found in control leaves and roots of А. annua (39.4 and 32.5 mg/g fresh weight, respectively), the lowest — in the «hairy» roots of A. dracunculus, obtained by Agrobacterium A4 wild strain transformation (6.4 mg/g) and in the leaves of control A. ludoviciana plants (6.5 mg/g). The largest variation of fructan content was measured in samples of А. annua, the lowest — in A. dracunculus. Wide range of measured parameter was found in the roots of control plants. It was concluded, that applied methods can be used for preliminary evaluation of the array of experimental data.

Keywords: Artemisia spp., fructans, methods for data visualization

Fiziol. rast. genet.
2017, vol. 49, no. 4, 321-327

Full text and supplemented materials

Free full text: PDF  

References

1. Drobot, K.O., Matvieieva, N.A. & Shakhovsky, A.M. (2016). Features of Agrobacterium rhizogenes-mediated genetic transformation of Artemisia vulgaris L., Artemisia annua L. and Ruta graveolens L. medicinal plants. Faktory Eksperimentalnoi Evoliucìi Organìzmìv, 19, pp. 117-120 [in Ukrainian].

2. Yermakov, A.I., Arasimovich, V.V. & Yarosh, N.P. (1987). Metody biokhimicheskogo issledovaniya rasteniy. Leningrad: Agropromizdat [in Russian].

3. Mastitskiy, S.E. & Shitikov, V.K. (2014). Statisticheskiy analiz i vizualizatsiya dannykh s pomoshch'yu R. Retrieved from https://r-analytics.blogspot.com/ [in Russian].

4. Bulgakov, V.P., Shkryl, Y.N. & Veremeichik, G.N. (2010). Engineering high yields of secondary metabolites in rubia cell cultures through transformation with rol genes. Methods in Molecular Biology, 643, pp. 229-242. https://doi.org/10.1007/978-1-60761-723-5_16

5. Chambers, J.M. & Hastie, T.J. (2017). Statistical models in S. https://doi.org/10.1201/9780203738535

6. Chashmi, N.A., Sharifi, M., Karimi, F. & Rahnama, H. (2010). Differential production of tropane alkaloids in hairy roots and in vitro cultured two accessions of Atropa belladonna L. under nitrate treatments. Zeitschrift Fur Naturforschung. Section C. Journal of Biosciences, 65 C, No. 5-6, pp. 373-379. https://doi.org/10.1515/znc-2010-5-609

7. Chilton, M.D., Drummond, M.H., Merlo, D.J., Sciaky, D., Montoya, A.L., Gordon, M.P. & Nester, E.W. (1977). Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell, 11, No. 2, pp. 263-271. https://doi.org/10.1016/0092-8674(77)90043-5

8. Christey, M.C. (2001). Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cellular and Developmental Biology. Plant, 37, No. 6, pp. 687-700. https://doi.org/10.1007/s11627-001-0120-0

9. Cleveland, W.S. & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79, No. 387, pp. 531-554. https://doi.org/10.1080/01621459.1984.10478080

10. Drobot, K.O., Shakhovsky, A.M. & Matvieieva, N.A. (2016). Tarragon (Artemisia dracunculus L.) "hairy" root culture production. Biotechnologia Acta, 9, No. 2, pp. 55-60. https://doi.org/10.15407/biotech9.02.055

11. Freeny, A.E. & Landwehr, J.M. (1990). Displays for data from large designed experiments. Computer Science and Statistics: Proc. 22nd Symp. Interface, pp. 117-126.

12. Giri, A. & Narasu, M.L. (2000). Transgenic hairy roots: Recent trends and applications. Biotechnology Advances, 18, No. 1, pp. 1-22. https://doi.org/10.1016/S0734-9750(99)00016-6

13. Kaur, N. & Gupta, A.K. (2002). Applications of inulin and oligofructose in health and nutrition. Journal of Biosciences, 27, No. 7, pp. 703-714. https://doi.org/10.1007/BF02708379

14. Matvieieva, N.A., Shakhovsky, A.M., Belokurova, V.B. & Drobot, K.O. (2016). Artemisia tilesii Ledeb hairy roots establishment using Agrobacterium rhizogenes-mediated transformation. Preparative Biochemistry and Biotechnology, 46, No. 4, pp. 342-345. https://doi.org/10.1080/10826068.2015.1031393

15. Murashige, T. & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, No. 3, pp. 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

16. Özer, D., Akin, S. & Özer, B. (2005). Effect of inulin and lactulose on survival of lactobacillus acidophilus LA-5 and bifidobacterium bifidum BB-02 in acidophilus-bifidus Yoghurt. Food Science and Technology International, 11, No. 1, pp. 19-24. https://doi.org/10.1177/1082013205051275

17. R Development Core Team. (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria. Retrieved from https://www.r-project.org/

19. Roberfroid, M.B. (2005). Introducing inulin-type fructans. British Journal of Nutrition, 93, No. S1, p. S13. https://doi.org/10.1079/BJN20041350 https://doi.org/10.1079/BJN20041350

20. Wang, C.T., Liu, H., Gao, X.S. & Zhang, H.X. (2010). Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Reports, 29, No. 8, pp. 887-894. https://doi.org/10.1007/s00299-010-0874-0

21. Wickham, H. (2016). ggplot2: elegant graphics for data analysis.

22. Zhang, H.C., Liu, J.M., Lu, H.Y. & Gao, S.L. (2009). Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Reports, 28, No. 8, pp. 1205-1213. https://doi.org/10.1007/s00299-009-0721-3