Fiziol. rast. genet. 2017, vol. 49, no. 4, 279-292, doi: https://doi.org/10.15407/frg2017.04.279

IN VITRO SELECTION OF WHEAT FOR RESISTANCE TO ABIOTIC STRESS FACTORS

Dubrovna O.V.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

In the review achievements of Ukrainian and foreign scientists in the field of in vitro selection of wheat for resistance to abiotic stress factors of environment have been observed. The attention have been paid to the basic directions, methods of selection and estimation, to possibilities, prospects and problems of one of the major branches of modern biotechnology of plants.

Keywords: Triticum L., in vitro selection, abiotic stress factors

Fiziol. rast. genet.
2017, vol. 49, no. 4, 279-292

Full text and supplemented materials

Free full text: PDF  

References

1. Al-Kholani, Kh.A. (2010). Obtaining Stress-Tolerant Maize Plants by the Method of Cell Selection. (Extended abstract of Doctor thesis). Institute of Plant Physiology of RAS. Moscow, Russia [in Russian].

2. Generozova, I.P., Mayevskaya, S.N. & Shugaev, A.G. (2009). Inhibition of the metabolic activity of mitochondria of etiolated pea seedlings subjected to water stress. Plant Physiology, 56, No. 1, pp. 45-52 [in Russian].

3. Girko, V.S. & Voloshchuk, S.I. (1999). The action of chemical and physical mutagenic factors in the culture of winter wheat tissue. Fiziol. biokhem. kult. rastenij, 31, No. 3, pp. 220-226 [in Russian].

4. Gubanova, N.Ya., Dubrovnaya, O.V. & Chugunkova, T.V. (2002). Cell selection of fodder beet for resistance to several stress factors. Biopolym. & cell, 18, No. 3, pp. 565-571 [in Russian]. https://doi.org/10.7124/bc.000602

5. Huseynova, I.M. (2011). The use of molecular markers for assessing the drought tolerance of wheat genotypes (Triticum L.). AMEA- now Khabarlyari (bioellia), 66, No. 1, pp. 53-62 [in Russian].

6. Dolgikh, Yu.I. (2005). Somaclonal variability of plants and the possibility of its practical use (for example, maize) (Extended abstract of Doctor thesis). Institute of Plant Physiology of RAS. Moscow, Russia [in Russian].

7. Dubrovna, O.V., Bavol, A.V. & Zinchenko, M.O. (2011). Influence of osmotic substances on the callus lines of bread wheat, resistant to the culture filtrate of G. graminis var. Tritici. Visn. Ukr. Soc. genet. and breeders, 9, No. 1, pp. 10-16 [in Ukrainian].

8. Dubrovna, O.V., Morgun, B.V. & Bavol, A.V. (2014). Biotechnology of wheat: Cell Selection and Genetic Engineering. Kyiv: Logos.

9. Dubrovna, O.V. & Morgun, B.V. (2009). Cell selection of wheat for resistance to stress factors of the environment. Fiziol. biokhem. kult. rastenij, 41, No. 6, pp. 463-476 [in Ukrainian].

10. Dubrovna, O.V., Chugunkova, T.V., Bavol, A.V. & Lyalko, I.I. (2012). Biotechnological bases for the creation of plants resistant to stress. Kyiv: Logos.

11. Erofeeva, E.A. (2010). The emergence of cross-adaptation to osmotic stress in wheat seedlings under the action of heavy metal salts. Retrieved from http://msu - research.ru /index.php/ biology/8–gidrobiology/259–cross–adtation.

12. Kalashnikova, E.A. (2003). Biological bases of plant cell selection. Dokl. Timir. Acad. of Agricul., No. 275, pp.110-112 [in Russian].

13. Lapshin, P.V., Butenko, R.G. & Shevelukha, V.S. (2001). Cell selection of spring bread wheat for resistance to UV-B radiation. Izv. Timir. Acad. of Agricul., No. 2, pp. 136-114 [in Russian].

14. Lutova, L.A. (2003). Biotechnology of higher plants. St. Petersburg: Publishing House of St. Petersb. Univer.

15. Morgun, V.V., Shwartau, V.V. & Kiriziy, D.A. (2008). Physiological basis for obtaining high yields of wheat. Fiziol. biokhem. kult. rastenij, 40, No. 6, pp. 463-479 [in Russian].

16. Nikitina, E.D., Khlebova, L.P., Sokolova, G.G. & Ereshchenko O.V. (2003). Creation of stress resistant material of spring bread wheat using in vitro cell selection. Izv. Altaisk. state univer., No. 3, pp. 2-20 [in Russian].

17. Reshetnikov, V.N., Spiridovich E.V. & Nosov, A.M. (2014). Plant biotechnology and the prospects for its development. Fiziol.rast. genet., 46, No. 1, pp. 3-18 [in Russian].

18. Sidorov, V.A. (1990). Plant biotechnology. Cell selection. Kyiv: Naukova Dumka.

19. Shupletsova, O.N. (2008, September). Cell selection of barley for resistance to edaphic stresses. Proceeding of the IX International conf. The biology of plant cells in vitro and biotechnology (pp.215-225), Zvenigorod, Russia.

20. Abdel-Ghany, H., Nawar, A. & Ibrahim, M. (2004, November). Using tissue culture to select for drought tolerance in bread wheat. Proceeding of the 4-th International conf. New directions for a diverse planet: Crop Sci. Congress (p.345), Brisbane, Australia.

21. Abdel-Hady, M., El-Sayed, O., Solaiman, E., Ismail, R. & Hasssan, A. (2001). Genetic detection of protein markers in some drought tolerant wheat cultivars regeneration from somatic embryogenesis. J. Agr. Sci., 26, pp. 5981- 5997.

22. Abdel-Hady, M., Hoda, M. & El-Naggar, H. (2007). Wheat genotypic variation and protein markers in relation with in vitro selection for drought tolerance. J. Appl. Sci. Res., 3, No. 10, pp. 926-934.

23. Ahmed, A. (1999). Response of immature embryos in vitro regeneration of some wheat (T. aestivum) genotypes under different osmotic stress of mannitol. J. Agr. Sci., 30, No. 3. pp. 25-34.

24. Ahmed, K., Mesterhazy, B., Bartyk, T. & Sagi, F. (1996). In vitro techniques for selecting wheat (Triticum aestivum L.) for Fusarium-resistance. II. Culture filtrate technique and inheritance of Fusarium-resistance in the somaclones. Euphytica, 91, No. 3, pp. 341-349. https://doi.org/10.1007/BF00033096

25. Aly, M., Sabry, S., Abdelfatah, O. & Elgharbawy, H. (2007). In vitro screening for the effect of sea water salinity stress on growth and biochemical characteristics of wheat Triticum aestivum L. Int. J. Appl. Agr. Res., 2, No. 1, pp. 1-11.

26. Arzani, A. & Mirodjagh, S. (1999). Response of durum wheat cultivars to immature embryo culture, callus induction and in vitro salt stress. Plant Cell, Tissue Organ. Cult., No-58, pp. 67-72. https://doi.org/10.1023/A:1006309718575

27. Bajji, M., Lutts, S. & Kinet, J. (2001). Physiological changes after exposure to and recovery from polyethyleneglycol induced water deficit in callus cultures issued from durum wheat (Triticum durum) cultivars differing in drought resistance. J. Plant Physiol., 156, pp. 75-83. https://doi.org/10.1016/S0176-1617(00)80275-8

28. Bakos, F., Darko, E., Ascough, G., Gaspar, L., Ambrus, H. & Barnabas B. (2008). A cytological study on aluminium-treated wheat anther cultures resulting in plants with increased Al tolerance. Plant Breed., 127, No. 1, pp. 236-240. https://doi.org/10.1111/j.1439-0523.2007.01473.x

29. Barakat, M. & Abdel-Latif, T. (1995). In vitro selection for drought tolerant lines in wheat. 1. Effect of polyethyleneglycol on the embryogenic cultures. J. Agr. Res., 40, No. 1, pp. 97-112.

30. Barakat, M.& Abdel-Latif, T. (1995). In vitro selection for drought-tolerant lines in wheat. II. In vitro characterization of cell lines and plant regeneration. J. Agr. Res., 40, No. 1, pp. 167-190.

31. Barakat, M. & Abdel-Latif, T. (1996). In vitro selection of wheat callus tolerant to high levels of salt and plant regeneration. Euphytica, 91, No. 2, pp. 127-140.

32. Bartels, D. & Sunkar, R. (2005). Drought and salt tolerance in plants. Crit. Rev. Plant Sci., 24, No. 1, pp. 23-58. https://doi.org/10.1080/07352680590910410

33. Biswas, B., Chowdhurry, A., Bhattacharya, B. & Mandal, A. (2002). In vitro screening for increases drought tolerance in rice. In Vitro Cell Dev. Biol. Plant., 38, pp. 525-530. https://doi.org/10.1079/IVP2002342

34. Bozorgipour, R. & Snape, J. (1997). An assessment of somaclonal variation as a breeding tool for generating herbicide tolerant genotypes in wheat (Triticum aestivum L.). Euphytica, 94, No. 3, pp. 335-340. https://doi.org/10.1023/A:1002966309224

35. Bray, E.A. (2002). Classification of genes differentially expressed during water deficit stress in Arabidopsis thaliana: an analysis microarray and differential expression data. Ann. Bot., 89, No. 5, pp. 803-811. https://doi.org/10.1093/aob/mcf104

36. Butt, A., Ahmed, N. & Mubin, M. (2015). Effect of peg and mannitol induced water stress on regeneration in wheat (Triticum aestivum L.). Pakistan J. Agr. Sci., 52, No. 4, pp.1025-1033.

37. Chinnusamy, V., Schumaker, K. & Zhu, J. (2003). Molecular genetic perspectives on cross–talk and specificity in abiotic stress signalling in plants. J. Exp. Bot., 55, No. 395, pp. 225-236. https://doi.org/10.1093/jxb/erh005

38. Coello, P., Hey, S. & Halford, N. (2011). The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J. Exp. Bot., 62, No. 3, pp. 883-893. https://doi.org/10.1093/jxb/erq331

39. Dai, A. (2013). Increasing drought under global warming in observations and models. Nature climate change, 3, pp. 52-58. https://doi.org/10.1038/nclimate1633

40. Dorffling, K., Dorffling, H., Lesselich, G. Luck, E., Zimmermann, C. & Jurgens, H. (1997). Heritable improvement of frost tolerance in winter wheat by in vitro-selection of hydroxyproline-resistant proline overproducing mutants. Euphytica, 93, No.1, pp. 1-10. https://doi.org/10.1023/A:1002946622376

41. Dorffling, K., Dorffling, H. & Lesselich, G. (1993). In vitro selection of winter wheat callus tolerant to frost. J. Plant Physiol., 142, pp. 222-225.

42. E1-Sayed, O., Rizkalla, A. & Sabri, S. (2007). In vitro mutagenesis for genetic improvement of salinity tolerance in wheat. Res. J. Agr. Biol. Sci., 4, No. 5, pp. 377-383.

43. Fang, Y. & Xiong, L. (2015).General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci., 72, No. 4, pp. 673-689. https://doi.org/10.1007/s00018-014-1767-0

44. Galovic, V., Kotaranin, Z. & Dencic, S. (2005). In vitro assessment of wheat tolerance to drought. Genetika, 37, No. 2, pp. 165-171. https://doi.org/10.2298/GENSR0502165G

45. Hemaid, I., Soliman, H. & Hendawy, M. (2013). Selection for drought tolerance genotypes in durum wheat (Triticum durum Desf.) under in vitro conditions. Middle-East J. Sci. Res., 14, No. 1, pp. 69-78.

46. Hsissou, D. & Bouharmont J. (1994). In vitro selection and characterization of drought-tolerant plants of durum wheat (Triticum durum Desf.). Agronomie, No. 2, pp. 65-70. https://doi.org/10.1051/agro:19940201

47. Javed, F. (2002). In vitro salt tolerance in wheat I. Growth and ion accumulation. Int. J. Agr. Biol., 4, No. 4, pp. 458-461.

48. Javed, F. (2002). In vitro salt tolerance in wheat II. Organic solute accumulation in callus. Int. J. Agr. Biol., 4, No. 4, pp. 462-464.

49. Javed, F. (2002). In vitro salt tolerance in wheat II. Organic solute accumulation in callus. Int. J. Agr. Biol., 4, No. 4, pp. 465-467.

50. Khong, G., Richaud, F., Coudert, Y., Pati, P., Santi, C., Perin, C., Breitler, J., Meynard, D., Vinh, D., Guiderdont, E. & Gantent. P. (2008). Modulating rice stress tolerance by transcription factors. Biotechnol. Genet. Eng. Rev., 25, No. 25, pp. 381-403. https://doi.org/10.5661/bger-25-381

51. Kondic-Spika, A. & Sesek, S. (2000). Koriscenje kalusne kulture za ispitivanje tolerantnosti genotipova psenice prema susi. Selekcija i semenarstvo, 7, No. 1-2, pp. 57-59.

52. Lestari, E.G. (2006). In vitro selection and somaclonal variation for biotic and abiotic stress tolerance. Biodiversitas, 7, pp. 297-301. https://doi.org/10.13057/biodiv/d070320

53. Lutts, S., Kinet, J. & Bouharmont, J. (1996). Effects of various salts and of mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.). Plant Physiol., 149, pp. 186-195. https://doi.org/10.1016/S0176-1617(96)80193-3

54. Morran, S., Eini, O. & Pyvovarenko, T. (2011). Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol. J., 9, No. 2, pp. 230-249. https://doi.org/10.1111/j.1467-7652.2010.00547.x

55. Pinheiro, C. & Chaves, M. (2011). Photosynthesis and drought: can we make metabolic connections from available data. J. Exp. Bot., 62, No. 3, pp. 869-882. https://doi.org/10.1093/jxb/erq340

56. Rai, M., Kalia, R. & Singh, R. (2011). Developing stress tolerant plants through in vitro selection - an overview of the recent progress. Environ. Exp. Bot., 71, pp. 89-98. https://doi.org/10.1016/j.envexpbot.2010.10.021

57. Sigurbjoornsson, E. (1995). Application of in vitro mutation techniques for crop improvement. Euphytica, 85, pp. 303-315. https://doi.org/10.1007/BF00023960

58. Smith, R., Bhashkaran, S. & Miller, F. (1995). Screening for drought tolerance in sorghum using cell culture. In Vitro Cell. Dev. Biol., 21, pp. 541-543. https://doi.org/10.1007/BF02620883

59. Sudyova, V., Slikova, S. & Galova, Z. (2002). Testing wheat (Triticum aestivum L.) and triticale (Triticosecale Witt.) callus to salt tolerance. Acta Pytotechnol. Zootechnol., 3, pp. 67-71.

60. Vij, S. & Tyagi, A. (2007). Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol. J., 3, pp. 361-380. https://doi.org/10.1111/j.1467-7652.2007.00239.x

61. Wang, W., Shang, X., Yucel, M. & Nguyen, H. (1993). Selection of cultured wheat cells for tolerance to high temperature stress. Crop Sci., 33, pp. 315-320. https://doi.org/10.2135/cropsci1993.0011183X003300020020x

62. Yadav, R., Sehgal, D., Vadez, V. (2011). Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. J. Exp. Bot., 62, No. 2, pp. 397-408. https://doi.org/10.1093/jxb/erq265

63. Zair, I., Chlyah, A. & Sabounji, K. (2003). Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell, Tissue Organ Cult., 73, No. 3, pp. 237-244. https://doi.org/10.1023/A:1023014328638

64. Zhang, G., Meng, L. & Mao, P. (2007). Study on the identification of the drought resistance of Elytrigia repens and E. intermedia at seedling stage. Acta Agr. Bor. Sin., 22, pp. 54-59.

65. Zhu, J.-K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol., 53, pp. 247-273. https://doi.org/10.1146/annurev.arplant.53.091401.143329