Fiziol. rast. genet. 2016, vol. 48, no. 2, 95-111, doi: https://doi.org/10.15407/frg2016.02.095

Role of jasmonates in plant adaptation to abiotic stressors

Kolupaev Yu.E., Yastreb T.O., Lugova G.A.

  • V.V. Dokuchaev Kharkiv National Agrarian University P/o «Communist-1», Kharkiv, 62483, Ukraine

Data on the synthesis of jasmonic acid (JA) in plants, the impact of stress factors and signaling mediators on its content were summarized. Participants of the processes of JA signal reception and transduction into genetic apparatus were considered. Particular attention was paid to the role of JIN1/MYC2 transcript factor in the implementation of physiological effects of JA. Jasmonate-dependent adaptive responses of plants, in particular induction of antioxidant system by JA, were characterized. Nature of JA interaction with other stress phytohormones like abscisic and salicylic acid, ethylene was briefly described.

Keywords: jasmonic acid, signaling mediators, abiotic stressors, stress phytohormones, adaptive responses

Fiziol. rast. genet.
2016, vol. 48, no. 2, 95-111

Full text and supplemented materials

Free full text: PDF  

References

1. Vayner, A.A., Lugovaya, A.A., Kolupaev, Yu.E. & Miroshnichenko, N.N. (2015). The infl uence of jasmonic acid on productivity and resistance of millet plants to unfavorable abiotic factors. Agrokhimiya, 4, pp. 62-67. [in Russian].

2. Glyanko, A.K. & Ishchenko, A.A. (2010). Structural and functional characteristics of plant NADPH oxidase: A review. Appl. Biochem. Microbiol., 46 (5), pp. 463-471. https://doi.org/10.1134/S0003683810050017

3. Karpets, Yu.V., Kolupaev, Yu.E. & Kosakivska, I.V. (2016). Nitric oxide and hydrogen peroxide as signal mediators at induction of heat resistance of wheat plantlets by exogenous jasmonic and salicylic asids. Fisiol. rast. genet., 48, No. 2, pp. 158-166. [in Russian]. https://doi.org/10.15407/frg2016.02.158

4. Karpets, Yu.V., Kolupaev, Yu.E., Lugovaya, A.A. & Oboznyi, A.I. (2014). Effect of jasmonic acid on the pro-/antioxidant system of wheat coleoptiles as related to hyperthermia tolerance. Russ. J. Plant Physiol., 61 (3), pp. 339-346. https://doi.org/10.1134/S102144371402006X

5. Kolupaev,Yu.E. & Karpets, Yu.V. (2010). Formation of adaptive responses of plants to the action of abiotic stressors. Kiev: Osnova [in Russian].

6. Kolupaev, Yu.E., Lugova, G.A., Oboznyi, A.I., Yastreb, T.O., Karpets, Yu.V. & Musatenko, L.I. (2013). Signal intermediates at the induction of antioxidant enzymes of plant cells by jasmonic acid. Dopov. Nac. akad. nauk Ukr., No. 10, pp. 159-164. [in Russian].

7. Lapa, S.V., Kovbasenko, R.V., Kovbasenko, V.M. & Dmytriev, O.P. (2012). Jasmonic acid: functions and mechanisms of action in plants. Kyiv: Kolobig [in Ukrainian].

8. Lugova, G.A., Karpets, Yu.V., Grygorenko, D.O., Kolomoets, B.O., Obozniy, O.I., Miroshnichenko, M.M. & Kolupaev, Yu.E. (2015). Influence of jasmonic acid on productivity of barley plants and their resistance to drought and fungal infections. Visn. Hark. nac. agrar. univ., Ser. Biol., 3 (36), pp. 54-61. [in Russian].

9. Maksimov, I.V., Sorokan, A.V., Chereoanova, E.A., Surina, O.B., Troshina, N.B. & Yarullina, L.G. (2011). Effects of salicylic and jasmonic acids on the components of pro/antioxidant system in potato plants infected with late blight. Russ. J. Plant Physiol., 58 (4), pp. 299-306. https://doi.org/10.1134/S1021443711010109

10. Paniuta, O.O., Shabliy, V.A. & Belava, V.N. (2009). Jasmonic acid and its participation in defence reactions of plant organism. Ukr. Biochem. J., 81 (2), pp. 14-26. [in Ukrainian].

11. Savchenko, T.V., Zastrijnaja, O.M. & Klimov, V.V. (2014). Oxylipins and plant abiotic stress resistance. Biochemistry (Mosc.), 79 (4), pp. 362-375. https://doi.org/10.1134/S0006297914040051

12. Tishchenko, E.N. (2013). Genetic engineering with use of L-proline metabolism genes for increase of plant osmotolerance. Fisiol. rast. genet., 45, No. 6, pp. 488-500. [in Russian].

13. Yastreb, T.O., Kolupaev, Yu.E., Lugovaya, A.A. & Dmitriev, A.P. (2015).The role of jasmonate signaling in the adaptation of Arabidopsis thaliana plants to salt stress. In Fundamental and applied problems of modern experimental of plant biology. Moscow, pp. 746-750. [in Russian].

14. Yastreb, T.O., Kolupaev, Yu.E., Lugovaya, A.A. & Dmitriev, A.P. (2016). Content of osmolytes and flavonoids under salt stress in Arabidopsis thaliana plants defective in jasmonate signaling. Appl. Biochem. Microbiol., 52 (2), pp. 210-215. https://doi.org/10.1134/S0003683816020186

15. Adie, B., Perez-Perez, J., Perez-Perez, M.M., Godoy, M., Sanchez-Serrano, J.J., Schmelz, E.A. & Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 19, pp. 1665-1681. https://doi.org/10.1105/tpc.106.048041

16. Agrawal, G.K., Tamogami, S., Han, O., Iwahashi, H. & Rakwal, R. (2004). Rice octadecanoid pathway. Biochem. Biophys. Res. Comm., 317(1), pp. 1-15. https://doi.org/10.1016/j.bbrc.2004.03.020

17. Ahlfors, R., Macioszek, V., Rudd J., Brosche, M, Schlichting, R, Scheel, D. & Kangasjarvi, J. (2004). Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J., 40(4), pp. 512-522. https://doi.org/10.1111/j.1365-313X.2004.02229.x

18. Altuzar-Molina, A.R., Munoz-Sanchez, J.A., Vazquez-Flota ,F., Monforte-Gonzalez, M., Racagni-Di Palma, G. & Hernandez-Sotomayor, S.M. (2011). Phospholipidic signaling and vanilin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells. Plant Physiol. Biochem., 49 (2), pp. 151-158. https://doi.org/10.1016/j.plaphy.2010.11.005

19. Babenko, L.M., Kosakivska, I.V. & Skaterna, T.D. (2015). Jasmonic acid: role in biotechnology and the regulation of plants biochemical processes. Biotechnol. Acta, 8 (2), pp. 36-51. https://doi.org/10.15407/biotech8.02.036

20. Balbi, V. & Devoto, A. (2008). Jasmonate signalling network in Arabidopsis thaliana: Crucial regulatory nodes and new physiological scenarios. New Phytol., 177 (92), pp. 301-318. https://doi.org/10.1111/j.1469-8137.2007.02292.x

21. Baxter, A., Mittler, R. & Suzuki, N. (2013). ROS as key players in plant stress signalling. J. Exp. Bot., 65 (5), pp. 1229-1240. https://doi.org/10.1093/jxb/ert375

22. Caldelari, D., Wang, G., Farmer, E.E. & Dong, X. (2011). Arabidopsis lox3/lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Mol. Biol., 75 (1-2), pp. 25-33. https://doi.org/10.1007/s11103-010-9701-9

23. Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M. & Kazan, K. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell., 19 (7), pp. 2225-2245. https://doi.org/10.1105/tpc.106.048017

24. Du, H., Liu, H. & Xiong, L. (2013). Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front. Plant Sci., 4, p. 397. https://doi.org/10.3389/fpls.2013.00397

25. Fauriea, B., Cluzeta, S. & Merillon, J.M. (2009). Implication of signaling pathways involving calcium, phosphorylation and active oxygen species in methyl jasmonate-induced defense responses in grapevine cell cultures. J. Plant Physiol., 166, pp. 1863-1877. https://doi.org/10.1016/j.jplph.2009.05.015

26. Fisahn, J., Herde, O., Willmitzer, L. & Pena-Cortes, H. (2004). Analysis of the transient increase in cytosolic Ca2+ during the action potential of higher plants with high temporal resolution: Requirement of Ca2+ transients for induction of jasmonic acid biosynthesis and PINII gene expression. Plant Cell Physiol., 45 (4), pp. 456-459. https://doi.org/10.1093/pcp/pch054

27. Footitt, S., Dietrich, D., Fait, A., Fernie, A.R., Holdsworth, M.J., Baker, A. & Theodoulou, F.L. (2007). The comatose ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant Physiol., 144 (3), pp. 1467-1480. https://doi.org/10.1104/pp.107.099903

28. Foyer, C.H. & Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox. Signal., 11(4), pp. 861-905. https://doi.org/10.1089/ars.2008.2177

29. Grebner, W., Stingl, N.E., Oenel, A., Mueller, M.J. & Berger, S. (2013). Lipoxygenase-6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol., 161 (4), pp. 2159-2170. https://doi.org/10.1104/pp.113.214544

30. Guo, J., Pang, Q., Wang, L., Yu, P., Li, N. & Yan, X. (2012). Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana. Proteome Sci., 10 (1), pp. 1-13. https://doi.org/10.1186/1477-5956-10-57

31. Han, Y., Mhamdi, A., Chaouch, S. & Noctor, G. (2013). Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ. 36 (6), pp. 1135-1146. https://doi.org/10.1111/pce.12048

32. Hazman, M., Hause, B., Eiche, E., Nick, P. & Riemann, M. Increased tolerance to salt stress in OPDA-deficient rice allene oxide cyclase mutants is linked to an increased ROS-scavenging activity (2015). J. Exp. Bot., 66 (11), pp. 3339-3352. https://doi.org/10.1093/jxb/erv142

33. Howe, G.A., Lee, G.I., Itoh, A., Li, L. & DeRocher, A.E. (2000). Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol., 123 (2), pp. 711-724. https://doi.org/10.1104/pp.123.2.711

34. Hsu, Y.Y. & Kao, C.H. (2011). Nitric oxide is involved in methyl jasmonate induced lateral root formation in rice. Crop. Environ. Bioinform., 8, pp. 160-167.

35. Huang, X., Stettmaier, K., Michel, C. Hutzler, P., Mueller, M.J. & Durner, J. (2004). Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta, 218 (6), pp. 938-946. https://doi.org/10.1007/s00425-003-1178-1

36. Hu, Y., Jiang, L., Wang, F. & Yu, D. (2013). Jasmonate regulates the inducer of CBF expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell., 25 (8), pp. 2907-2924. https://doi.org/10.1105/tpc.113.112631

37. Hyun, Y., Choi, S., Hwang, H.J. Yu, J., Nam, S.J., Ko, J., Park, J.Y., Seo, Y.S., Kim, E.Y., Ryu, S.B., Kim, W.T., Lee, Y.H., Kang, H. & Lee, I. (2008). Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev. Cell, 14(2), pp. 183-192. https://doi.org/10.1016/j.devcel.2007.11.010

38. Hyun, Y. & Lee, L. (2008). Generating and maintaining jasmonic acid in Arabidopsis. Plant Signal. Behav., 3 (10), pp. 798-800. https://doi.org/10.4161/psb.3.10.5875

39. Iqbal, N., Umar, S., Khan, N.A. & Khan, M.I.R. (2014). A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism. Environ. Exp. Bot., 100, pp. 34-42. https://doi.org/10.1016/j.envexpbot.2013.12.006

40. Ismail, A., Riemann, M. & Nick, P. (2012).The jasmonate pathway mediates salt tolerance in grapevines. J. Exp. Bot., 63 (5), pp. 2127-2139. https://doi.org/10.1093/jxb/err426

41. Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y. & Howe, G.A. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. USA, 105 (19), pp. 7100-7105. https://doi.org/10.1073/pnas.0802332105

42. Kavi Kishor, P.B. & Sreenivasulu, N. (2014). Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ., 37 (2), pp. 300-311. https://doi.org/10.1111/pce.12157

43. Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci., 20(4), pp. 219-229. https://doi.org/10.1016/j.tplants.2015.02.001

44. Keramat, B., Kalantari, K.M. & Arvin, M.J. (2009). Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). Afr. J. Microbiol. Res., 3, pp. 240-244.

45. Koorneef, A. & Pieterse, C.M.J. Cross talk in defense signaling (2008). Plant Physiol., 146 (3), pp. 839-844. https://doi.org/10.1104/pp.107.112029

46. Kramell, R., Atzorn, R., Schneider, G., Miersch, O., Bruckner, C.. Schmidt, J., Sembdner, G. & Parthier, B. (1995). Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue. J. Plant Growth Regul., 14, pp. 29-36. https://doi.org/10.1007/BF00212643

47. Kumari, G.J., Reddy, A.M., Naik, S.T., Kumar, S.G., Prasanthi, J., Sriranganayakulu, G., Reddy, P.C. & Sudhakar, C. (2006). Jasmonic acid induced changes in protein pattern, antioxidative enzyme activities and peroxidase isozymes in peanut seedlings. Biol. Plant., 50 (2), pp. 219-226. https://doi.org/10.1007/s10535-006-0010-8

48. Kumar, K., Kumar, M., Kim, S.R., Ryu, H. & Cho, Y.G. (2013). Insights into genomics of salt stress response in rice. Rice, 6: 27. https://doi.org/10.1186/1939-8433-6-27

49. Lackman, P., Gonzalez-Guzman, M., Tilleman, S., Carqueijeiro, I., Perez, A.C., Moses, T., Seo, M., Kanno, Y., Hakkinen, S.T., Van Montagu, M.C., Thevelein, J.M., Maaheimo, H., Oksman-Caldentey, K.M., Rodriguez, P.L., Rischer, H. & Goossens, A. (2011). Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc. Natl. Acad. Sci. USA, 108 (14), pp. 5891-5896. https://doi.org/10.1073/pnas.1103010108

50. Laudert, D. & Weiller, E.W. (1998). Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J., 15, pp. 675-684. https://doi.org/10.1046/j.1365-313x.1998.00245.x

51. Laurie-Berry, N., Joardar, V., Street, I.H. & Kunkel, B.N. (2006). The Arabidopsis thaliana jasmonate insensitive 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol. Plant-Microbe Interact., 19, pp. 789-800. https://doi.org/10.1094/MPMI-19-0789

52. Liechti, R. & Farmer, E.E. (2003). Jasmonate biochemical pathway. Sci. STKE, 2003(203): CM18. https://doi.org/10.1126/stke.2003.203.cm18

53. Li, T., Jia, K.P., Lian, H.L. Yang, X., Li, L. & Yang, H.Q. (2014). Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem. Biophys. Res. Comm., 454(1), pp. 78-83. https://doi.org/10.1016/j.bbrc.2014.10.059

54. Liu, Y., Hao, Y., Liu, Y. & Huang, W. (2005). Effects of wounding and exogenous jasmonic acid on the peroxidation of membrane lipid in pea seedlings leaves. Agricult. Sci. China, 4, pp. 614-620.

55. Lodeyro, A.F. & Carrillo, N. (2015). Chapter 1. Salt stress in higher plants: Mechanisms of toxicity and defensive responses. In: Tripathi, B.N. & Muller, M. (Eds). Stress Responses in Plants Mechanisms of Toxicity and Tolerance. Heidelberg; New York; Dordrecht; London: Springer, pp. 1-34. https://doi.org/10.1007/978-3-319-13368-3_1

56. Lorenzo, O., Piqueras, R., Sanchez-Serrano, J.J. & Solano, R. (2003). Ethylene Response Factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell, 15 (1), pp. 165-178. https://doi.org/10.1105/tpc.007468

57. Ma, C., Wang, Z.Q., Zhang, L.T., Sun, M.M. & Lin, T.B. (2014). Photosynthetic responses of wheat (Triticum aestivum L.) to combined effects of drought and exogenous methyl jasmonate. Photosynthetica, 52, pp. 377-385. https://doi.org/10.1007/s11099-014-0041-x

58. Marino, D., Dunand, C., Puppo, A. & Pauly, N. (2012). A burst of plant NADPH oxidases. Trends Plant Sci., 17(1), pp. 9-15. https://doi.org/10.1016/j.tplants.2011.10.001

59. Miao, Y. & Zentgraf, U. (2007). The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell, 19 (3), pp. 819-830. https://doi.org/10.1105/tpc.106.042705

60. Orozco-Cardenas, M.L., Narvaez-Vasquez, J. & Ryan, C.A. (2001). Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell, 13 (1), pp. 179-191. https://doi.org/10.1105/tpc.13.1.179

61. Pang, Y., Rong, X. & Shi, L. (2006). Influence of exogenous methyl jasmonate on germination of rice seeds under salt stress. J.S. China Agr. Univ. Natur. Sci., 27, pp. 113-116.

62. Pedranzani, H., Racagni, G., Alemano, S., Miersch, O., Ramirez, I., Pena-Cortes, H., Taleisnik, E., Machado-Domenech, E. & Abdala, G. (2003). Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul., 41 (2), pp. 149-158. https://doi.org/10.1023/A:1027311319940

63. Roveda-Hoyos, G. & Fonseca-Moreno, L.P. (2011). Proteomics: a tool for the study of plant response to abiotic stress. Agr. Colombiana, 29, pp. 221-230.

64. Sanchez-Romera, B., Ruiz-Lozano, J.M., Li, G., Martinez-Ballesta Mdel, C., Carvajal, M., Zamarreno, A.M., Garcia-Mina, J.M., Maurel, C. & Aroca, R. (2014). Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ., 37 (4), pp. 995-1008. https://doi.org/10.1111/pce.12214

65. Santino, A., Taurino, M., De Domenico, S. Bonsegna, S., Poltronieri, P., Pastor, V. & Flors, V. (2013). Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep., 32 (7), pp. 1085-1098. https://doi.org/10.1007/s00299-013-1441-2

66. Savchenko, T., Kolla, V.A., Wang, C.Q., Nasafi, Z., Hicks, D.R., Phadungchob, B., Chehab, W.E., Brandizzi, F., Froehlich, J. & Dehesh, K. (2014). Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol., 164 (3), pp. 1151-1160. https://doi.org/10.1104/pp.113.234310

67. Scheler, C., Durner J. & Astier J. (2013). Nitric oxide and reactive oxygen species in plant biotic interactions. Curr. Opin. Plant Biol., 16(4), pp. 534-539. https://doi.org/10.1016/j.pbi.2013.06.020

68. Sembdner, G. & Parthier, B. (1993). The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol., 44, pp. 569-589. https://doi.org/10.1146/annurev.pp.44.060193.003033

69. Shana, C. & Liang, Z. (2010). Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci., 178, pp. 130-139. https://doi.org/10.1016/j.plantsci.2009.11.002

70. Shan, C., Zhou, Y. & Liu, M. (2015). Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress. Protoplasma, 252 (5), pp. 1397-1405. https://doi.org/10.1007/s00709-015-0756-y

71. Shen, Y., Tang, M.J., Hu, Y.L. & Lin, Z.P. (2004). Isolation and characterization of a dehydrinlike gene from drought-tolerant Boea crassifolia. Plant Sci., 166, pp. 1167-1175. https://doi.org/10.1016/j.plantsci.2003.12.025

72. Sheteawi, S.A. (2007). Improving growth and yield of salt-stressed soybean by exogenous application of jasmonic acid and ascobin. Int. J. Agr. Biol., 9 (3), pp. 473-478.

73. Simontacchi, M., Garcia-Mata, C., Bartoli, C.G., Santa-Maria, G.E. & Lamattina, L. (2013). Nitric oxide as a key component in hormone-regulated processes. Plant Cell Rep., 32 (6), pp. 853-866. https://doi.org/10.1007/s00299-013-1434-1

74. Staswick, P.E. & Tiryaki, I. (2004). The oxylipin signal jasmonic acid isactivated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell, 16, pp. 2117-2127. https://doi.org/10.1105/tpc.104.023549

75. Stenzel, I., Hause, B., Maucher, H., Pitzschke, A., Miersch, O., Ziegler, J., Ryan, C.A. & Wasternack, C. (2003). Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato - amplification in wound signaling. Plant J., 33 (3), pp. 577-589. https://doi.org/10.1046/j.1365-313X.2003.01647.x

76. Stenzel, I., Hause, B., Miersch, O., Kurz, T., Maucher, H., Weichert, H., Ziegler, J., Feussner, I. & Wasternack, C. (2003). Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol. Biol., 51, pp. 895-911. https://doi.org/10.1023/A:1023049319723

77. Suhita, D., Raghavendra, A.S., Kwak, J.M. & Vavasseur, A. (2004). Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol., 134 (4), pp. 1536-1545. https://doi.org/10.1104/pp.103.032250

78. Suza, W.P., Rowe, M.L., Hamberg, M. & Staswick, P.E. (2010). A tomato enzyme synthesizes (+)-7-isojasmonoyl-L-isoleucine in wounded leaves. Planta, 231 (3), pp. 717-728. https://doi.org/10.1007/s00425-009-1080-6

79. Takahama, U. (2004). Oxidation of vacuolar and apoplastic substrates by peroxidase: physiological significance of the oxidation reactions. Phytochem. Rev., 3, pp. 207-219. https://doi.org/10.1023/B:PHYT.0000047805.08470.e3

80. Takahashi, F., Yoshida, R., Ichimura, K., Mizoguchi, T., Seo, S., Yonezawa, M., Maruyama, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. (2007). The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell, 19 (3), pp. 805-818. https://doi.org/10.1105/tpc.106.046581

81. Theodoulou, F.L., Job, K., Slocombe, S.P., Footitt, S., Holdsworth, M., Baker, A., Larson, T.R. & Graham, I.A. (2005). Jasmonic acid levels are reduced in comatose ATP-Binding Cassette Transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol., 137 (3), pp. 835-840. https://doi.org/10.1104/pp.105.059352

82. Ton, J., Flors, V. & Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends Plant Sci., 14, pp. 310-317. https://doi.org/10.1016/j.tplants.2009.03.006

83. Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A.M. & Close, T.J. (2007). Large-scale expression profiling and physiological characterization of jasmonic acid mediated adaptation of barley to salinity stress. Plant Cell Environ., 30 https://doi.org/10.1111/j.1365-3040.2006.01628.x (4), pp. 410-421. https://doi.org/10.1111/j.1365-3040.2006.01628.x

84. Walia, H., Wilson, C., Wahid, A., Condamine, P., Cui, X. & Close, T.J. (2006). Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct. Integr. Genomics, 6 (2), pp. 143-156. https://doi.org/10.1007/s10142-005-0013-0

85. Wasternack, C. & Hause, B. (2013). Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot., 111 (6), pp. 1021-1058. https://doi.org/10.1093/aob/mct067

86. Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot., 100 (4), pp. 681-697. https://doi.org/10.1093/aob/mcm079

87. Weber, H., Vick, B.A. & Farmer, E.E. (1997). Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc. Natl. Acad. Sci. USA, 94 (19), pp. 10473-10478. https://doi.org/10.1073/pnas.94.19.10473

88. Vadav, V., Mallappa, C., Gangappa, S.N., Bhatia, S. & Chattopadhyay, S. (2005). A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell, 17 (7), pp. 1953-1966. https://doi.org/10.1105/tpc.105.032060

89. Yan, Y., Borrego, E. & Kolomiets, M.V. (2013). Jasmonate biosynthesis, perception and function in plant development and stress responses. In: Baez R.V. (ed.) Lipid Metabolism. inTech., pp. 383-439. https://doi.org/10.5772/52675 https://doi.org/10.5772/52675

90. Zhao, M.L., Wang, J.N., Shan, W., Fan, J.G,, Kuang, J.F., Wu, K.Q., Li, X.P., Chen, W.X., He, F.Y., Chen, J.Y. & Lu, W.J. (2013). Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ., 36(1), pp. 30-51. https://doi.org/10.1111/j.1365-3040.2012.02551.x

91. Zhao, Y., Dong, W., Zhang, N., Ai, X., Wang, M, Huang, Z., Xiao, L. & Xia, G. (2014). A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol., 164 (2), pp. 1068-1076. https://doi.org/10.1104/pp.113.227595