Fiziol. rast. genet. 2016, vol. 48, no. 1, 43-49, doi: https://doi.org/10.15407/frg2016.01.043

Activity of the histone acetyl transferase, histone deacetylase, ROS content and antioxidant activity in the cells of callus culture of Arabidopsis thaliana at the initial stages of acute osmotic stress

Jadko S.I.

  • M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereschenkivska St., Kyiv, 01004, Ukraine

The activity of histone acetyltransferase (HAT), histone deacetylase (HDA), content of reactive oxygen species (ROS) and antioxidant activity of ascorbate peroxidase (AP), catalase (CAT) and thioredoxin (TP) in the callus culture of А. thaliana at the early stages of acute osmotic stress have been investigated. It is established that under the stress took place an increase in HAT, HDA activities and the ROS content, especially H2O2, and the activity of AP, Cat and TR. The data obtained are discussed in aspect of genome expression regulation and role of redox signaling in generation of plant cells stress response.

Keywords: Arabidopsis thaliana, callus culture, histone acetyltransferase, histone deacetylase, reactive oxygen species, ascorbate peroxidase, catalase, thioredoxin, osmotic stress

Fiziol. rast. genet.
2016, vol. 48, no. 1, 43-49

Full text and supplemented materials

Free full text: PDF  

References

1. Zhadko, S.I. (2012). Early increase in the content of reactive oxygen species and the activity of ascorbate peroxidase and catalase in the leaves of Arabidopsis thaliana plants under osmotic and oxidative stress. Visnyk Harkivskogo agrarnogo universytetu. Biologiya, 3 (27), pp. 5-64 [in Russian].

2. Zhadko, S. (2014). Early increase in H2O2 content and activity of peroxydoxin and thioredoxin in Arabidopsis thaliana tissue culture at osmotic stress of varying intensity. Visnyk Lvivskogo universytetu. Ser. biologichna, 64, pp. 287-292 [in Ukrainian].

3. Kolupaev, Yu.E. & Karpets, Yu.V. (2014). Reactive oxygen species and stress signaling in plants. Ukr. Biochem. J., 86 (4), pp. 18-35 [in Russian]. https://doi.org/10.15407/ubj86.04.018

4. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, pp. 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3

5. Boyko, A. & Kovalchuk, I. (2008). Epigenetic control of plant stress response. Environmental and Molecular Mutagenesis, 49, pp. 61-72. https://doi.org/10.1002/em.20347

6. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical. Biochemistry, 72, pp. 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

7. Chen, L.T., Luo, M., Wang, Y.Y. & Wu, K. (2010). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. Journal of Experimental Botany, 61, No. 12, pp. 3345-3353. https://doi.org/10.1093/jxb/erq154

8. Chen, M., Lv, S. & Meng, Y. (2010). Epigenetic performers in plants. Development Growth & Differentiation, 52, No. 6, pp. 555-566. https://doi.org/10.1111/j.1440-169X.2010.01192.x

9. Chen, Z.J. & Tiana, L. (2007). Roles of dynamic and reversible histone acetylation in plant development and polyploidy. Biochimica et Biophysica Acta, 1769, pp. 295-307. https://doi.org/10.1016/j.bbaexp.2007.04.007

10. Chinnusamy, V. & Zhu, J.-K. (2009).Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 12, pp. 1-7. https://doi.org/10.1016/j.pbi.2008.12.006

11. Dietz, K.-J. (2008). Redox signal integration: from stimulus to networks and genes. Physiol. Plant., 133, pp. 459-468. https://doi.org/10.1111/j.1399-3054.2008.01120.x

12. Hollender, C. & Zhongchi, L.Z. (2008). Histone deacetylase genes in Arabidopsis development. International Journal of Plant Biology, 50, pp. 875-885. https://doi.org/10.1111/j.1744-7909.2008.00704.x

13. Josling, G.A., Selvarajah, S.A., Petter, M. & Duffy, M.F. (2012). The role of bromodomain proteins in regulating gene expression . Genes, 3, pp. 320-343. https://doi.org/10.3390/genes3020320

14. Kumar, S. & Holmgren, A. (1999). Induction of thioredoxin, thioredoxin reductase and glutaredoxin activity in mouse skin by TPA, a calcium ionophore and other tumor promoters. Carcinogenesis, 20, No. 9, pp. 1761-1767. https://doi.org/10.1093/carcin/20.9.1761

15. Maksymiec, W. & Krupa, Z. (2006). The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environmental and Experimental Botany, 57, pp.187-194. https://doi.org/10.1016/j.envexpbot.2005.05.006

16. Meyer, Y., Belin, C., Delorme-Hinoux,V., Reichheld, J.P. & Riondet, C. (2012). Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxidants & Redox Signaling, 17, pp. 1124-1160. https://doi.org/10.1089/ars.2011.4327

17. Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Shulaev, V. & Van Breusegem, F. (2011). ROS signaling: the new wave? Trends in Plant Science, 16, pp. 300-309. https://doi.org/10.1016/j.tplants.2011.03.007

18. Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22, pp. 867-880.

19. Santos, C.V. & Rey, P. (2006). Plant thioredoxins are key actors in the oxidative stress response. Trends in Plant Science, 11, No. 7, pp. 329-334. https://doi.org/10.1016/j.tplants.2006.05.005

20. Suzuki, N., Koussevitzky, S., Mittler, R. & Miller, G. (2012). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environmental, 35, pp. 259-270. https://doi.org/10.1111/j.1365-3040.2011.02336.x

21. Zhang, X. (2008). The epigenetic landscape of plants. Science, 320, pp. 489-492. https://doi.org/10.1126/science.1153996