Fiziol. rast. genet. 2016, vol. 48, no. 5, 401-415, doi: https://doi.org/10.15407/frg2016.05.401

Accumulation of neutral lipids in the cells of Chlamydomonas reinhardtii under stress conditions

Stepanov S.S.

  • M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine  2 Tereschenkivska St., Kyiv, 01661, Ukraine

The main achievements of the last decades in the study of the mechanisms of accumulation of neutral lipids, including triacylglycerols (TAG), in microalgal cells in response to stress are discussed at example of a model organism — the unicellular green algae Chlamydomonas reinhardtii. Algae are now considered as promising feedstock for biofuel production of the third and fourth generations. The factors that positively influence the accumulation of neutral lipids in the cells of С. reinhardtii are analyzed, the structure, biochemical composition and physiological role of intracellular lipid inclusions are described and the properties of the mutant strains capable to increased accumulation of TAG are considered.

Keywords: Chlamydomonas reinhardtii, triacylglycerols, storage lipids, fatty acids, lipid bodies, biodiesel

Fiziol. rast. genet.
2016, vol. 48, no. 5, 401-415

Full text and supplemented materials

Free full text: PDF  

References

1. Zolotarova, O.K., Shnyukova, E.I., Sivash, O.O. & Mihaylenko, N.F. (2008). Prospects for the use of microalgae in biotechnology. Kyiv: Alterpres [in Ukrainian].

2. Zolotarova, O.K. & Shnyukova, E.I. (2010). Where does the biofuel industry go? Visnyk NAN Ukrainy, No. 4, pp. 10-20 [in Ukrainian].

3. Syvash, O.O., Mihaylenko, N.F. & Zolotarova, O.K. (2001). Sugars as a key link in the regulation of the metabolism of photosynthetic cells. Ukrayinskiy botanichniy zhurnal, 58, No. 3, pp. 121-127 [in Ukrainian].

4. Solovchenko, A.E. (2012). Physiological role of accumulation of neutral lipids in eukaryotic microalgae under stress. Plant Physiology, 59, pp. 192-202 [in Russian].

5. Stepanov, S.S. & Zolotarova, O.K. (2011). Metabolic pathway of methanol in plants. Ukrayinskiy biohimichniy zhurnal, 83, No. 4, pp. 5-15 [in Ukrainian].

6. Austin, J.R., Frost, E., Vada, A., Kessler, F. & Staehelin, L.A. (2006). Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell, 18, pp. 1693-1703. https://doi.org/10.1105/tpc.105.039859

7. Ball, S., Marianne, T., Dirick, L., Fresnoy, M., Delrue, B. & Desq, A. (1991). Chlamydomonas reinhardtii low-starch mutant is defective for 3-phosphoglycerate activation and orthophosphate inhibition of ADP-glucose pyrophosporylase. Planta, 185 (1), pp. 17-26.

8. Brehelin, C., Kessler, F. & van Wijk, K.J. (2007). Plastoglobules: versatile lipoprotein particles in plastids. Trends in Plant Science, 12, pp. 260-266. https://doi.org/10.1016/j.tplants.2007.04.003

9. Brett, M. & Muller, N.D. (1997). The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology, 38 (3), pp. 483-499. https://doi.org/10.1046/j.1365-2427.1997.00220.x

10. Brown, L.M. & Zeiler, K.G. (1993). Aquatic biomass and carbon dioxide trapping. Energy Conversion Management, 34, pp. 1005-1013. https://doi.org/10.1016/0196-8904(93)90048-F

11. Cakmak, T., Angun, P., Ozkan, A.D., Cakmak, Z., Olmez, T.T. & Tekinay, T. (2012). Nitrogen and sulfur deprivation differentiate lipid accumulation targets of Chlamydomonas reinhardtii. Bioengineered Bugs, 3, pp. 343-346. https://doi.org/10.4161/bioe.21427

12. Cardozo, K.H.M., Guaratini, T., Barros, M.P., Falcao, V.R., Tonon, A.P., Lopez, N.P., Campos, S., Torres, M.A., Souza, A.O., Colepicolo, P. & Pinto, E. (2007). Metabolites from algae with economical impact. Comp. Biochem. Physiol. C.: Toxicol. Pharmacol., 146, pp. 60-78. https://doi.org/10.1016/j.cbpc.2006.05.007

13. Chisti, Y. (2007). Biodisel from microalgae. Biotechnology Advances, 25, pp. 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001

14. Deng, X.D., Li, Y.J. & Fei, X.W. (2009). Microalgae: A promising feedstock for biodiesel. African Journal of Microbiology Research, 3, pp. 1008-1014.

15. Deng, X., Fei, X. & Li, Y. (2011). The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. African Journal of Microbiology Research, 5, pp. 260-270.

16. Docampo, R., Ulrich, P. & Moreno, S.N.J. (2010). Evolution of acidocalcisomes and their role in polyphosphate storage and osmoregulation in eukaryotic microbes. Philosophical Transactions of the Royal Society B, 365, pp. 775-784 https://doi.org/10.1098/rstb.2009.0179

17. Fahy, E., Subramaniam, S., Brown, H.A., Glass, C.K., Merrill, A.H., Murphy, R.C., Raetz, C.R., Russell, D.W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M.S., White, S.H., Witztum, J.L. & Dennis, E.A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46, pp. 839-862. https://doi.org/10.1194/jlr.E400004-JLR200

18. Fan, J., Yan, C., Andre, C., Shanklin, J., Schwender, J. & Xu, C. (2012). Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiology, 53 (8), pp. 1380-1390. https://doi.org/10.1093/pcp/pcs082

19. Fan, Y. & Chapkin, R. (1998). Importance of dietary г-linolenic acid in human health and nutrition. Journal of Nutrition, 128, pp. 1411-1414. https://doi.org/10.1093/jn/128.9.1411

20. Froissard, M., D'andre'a, S., Boulard, C. & Chardot, T. (2009). Heterologous expression of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. FEMS Yeast Research, 9, pp. 428-438. https://doi.org/10.1111/j.1567-1364.2009.00483.x

21. Fujimoto, T. & Ohsaki, Y. (2006). Cytoplasmic lipid droplets. Rediscovery of an old structure as a unique platform. Annals of the New York Academy Sciences, 1086, pp. 104-115.

22. Goodson, C., Roth, R., Wang, Z.T. & Goodenough, U. (2011). Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryotic Cell, 10 (12), pp. 1592-1606. https://doi.org/10.1128/EC.05242-11

23. Grossman, A.R. (2000). Chlamydomonas reinhardtii and photosynthesis: genetics to genomics Current Opinion in Plant Biology, 3, pp.132-137.

24. Guschina, I.A. & Harwood, J.L. (Eds.) (2009). Algal lipids and effect of the environment on their biochemistry. Lipids in Aquatic Ecosystems. Dordrecht; Heidelberg; London; New York: Springer-Verlag.

25. Guschina, I.A. & Harwood, J.L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45, pp. 160-186. https://doi.org/10.1016/j.plipres.2006.01.001

26. Hansen, J., Sshade, D. & Harris, C. (1997). Docosahexaenoic acid plus arachidonic acid enhance preterm infant growth. Prostaglandins Leukotrienes and Essential Fatty Acids, 57, p. 196.

27. Harwood, J.L. & Jones, A.L. (1989). Lipid metabolism in algae. Advances in Botanical Research, 16, pp. 1-53. https://doi.org/10.1016/S0065-2296(08)60238-4

28. Harwood, J.L. & Scrimgeour, C.M. (Eds.) (2007). Fatty acid and lipid structure. The Lipid Handbook. Boca Raton: Taylor and Francis Group, CRC Press.

29. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant Journal, 54, pp. 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x

30. Kessler, F. & Vidi, P.A.(2007). Plastoglobule lipid bodies: their functions in chloroplasts and their potential for applications. Advances in Biochemical Engineering Biotechnology, 107, pp. 153-172. https://doi.org/10.1007/10_2007_054

31. Kim, S., Kim, H., Ko, D., Yamaoka, Y., Otsuru, M., Kawai-Yamada, M., Ishikawa, T., Oh, H.M., Nishida, I., Li-Beisson, Y. & Lee, Y. (2013). Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. Plos one, 8 (12), p. e81978. https://doi.org/10.1371/journal.pone.0081978

32. Kreimer, G. (2009). The green algal eyespot apparatus: a primordial visual system and more? Current Genetics, 55, pp. 19-43.

33. Kruse, O., Rupprecht, J., Mussgnug, J.H., Dismukes, G.C. & Hankamer, B. (2005). Photosynthesis: A bluepriny for solar energy capture and biohydrogen production technologies. Photochemical & Photobiological Science, 4 (12), pp. 957-970. https://doi.org/10.1039/b506923h

34. Li-Beisson, Y., Beisson, F. & Riekhof, W. (2015). Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J. Cell Mol. Biol., 82, pp. 504-522. https://doi.org/10.1111/tpj.12787

35. Liu, B.S. & Benning, C. (2013). Lipid metabolism in microalgae distinguishes itself. Current Opinion in Biotechnology, 24, pp. 300-309. https://doi.org/10.1016/j.copbio.2012.08.008

36. Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S. & Hu, Q. (2010). Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Engineering, 12, pp. 387-391. https://doi.org/10.1016/j.ymben.2010.02.002

37. Marshall, W.F. (2008). Basal bodies: Platforms for building cilia. Current Topics in Developmental Biology, 85, pp. 1-22. https://doi.org/10.1016/S0070-2153(08)00801-6

38. Merchant, S.S., Prochnik, S.E. & Vallon, O. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science, 318, pp. 245-250. https://doi.org/10.1126/science.1143609

39. Miller, R., Wu, G., Deshpande, R.R., Vieler, A., Garther, K., Moellering, E.R., Zauner, S., Cornish, A.J., Liu, B., Bullard, B., Sears, B.B., Kuo, M.H., Hegg, E.L., Shachar-Hill, Y., Shiu, S.H. & Benning, C. (2010). Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiology, 154 (4), pp.1737-1752. https://doi.org/10.1104/pp.110.165159

40. Min, S.K., Yoon, G.H., Joo, J.H. & Sim, S.J. (2014). Mechanosensitive physiology of Chlamydomonas reinhardtii under direct membrane distortion. Scientific Reports, 4, p. 4675.

41. Moellering, E.R. & Benning, C. (2010). RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryotic Cell, 9 (1), pp. 97-106. https://doi.org/10.1128/EC.00203-09

42. Msanne, J., Konda, Xu. D., Casas-Mollano, A.R., Awada, T.,Cahoon, E.B. & Cerutti, H. (2012). Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp C-169. Phytochemistry, 75, pp. 50-59. https://doi.org/10.1016/j.phytochem.2011.12.007

43. Murphy, D.J. (2001). The biogenesis and functions of lipid bodies in animals, plants, and microorganisms. Progress in Lipid Research, 40, pp. 325-438. https://doi.org/10.1016/S0163-7827(01)00013-3

44. Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandrai, A. & Bux, F. (2011). Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresource Technology,102, pp. 57-70. https://doi.org/10.1016/j.biortech.2010.06.077

45. Mykhaylenko, N.F., Syvash, O.O., Tupik, N.D. & Zolotareva, O.K. (2004). Exogenous hexoses cause quantitative changes of pigment and glycerolipid composition in filamentous cyanobacteria. Photosynthetica, 42 (1), pp. 105-110. https://doi.org/10.1023/B:PHOT.0000040577.30424.d1

46. Ohad, I., Siekevitz, P. & Palade. G.E. (1967). Biogenesis of chloroplast membranes. I. Plastid dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardtii). Journal of Cell Biology, 35, pp. 521-552.

47. Oswald, W.J. & Golueke, C.G. (1960). Biological transformation of solar energy. Advancess in Applied Microbiology, 11, pp. 223-242. https://doi.org/10.1016/S0065-2164(08)70127-8

48. Park, J.B.K., Craggs, R.J. & Shilton, A.N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, pp. 35-42. https://doi.org/10.1016/j.biortech.2010.06.158

49. Pittman, J.K., Dean, A.P., Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102, pp. 17-25. https://doi.org/10.1016/j.biortech.2010.06.035

50. Poxleitner, M., Rogers, S.W., Samuels, A.L., Browse, J. & Rogers, J.S. (2006). A role for caleosin in egradation of oil-body storage lipid during seed germination. Plant Journal, 47, pp. 917-933. https://doi.org/10.1111/j.1365-313X.2006.02845.x

51. Ramanan, R., Kim, B.H., Cho, D.H., Ko, S.R., Oh, H.M. & Kim, H.S. (2013). Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii. FEBS Letters, 587 (4), pp. 370-377. https://doi.org/10.1016/j.febslet.2012.12.020

52. Rochaix, J.D. (2002). Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes. FEBS Letters, 529(1), pp. 34-38. https://doi.org/10.1016/S0014-5793(02)03181-2

53. Sager, R. & Palade, G.E. (1957). Structure and development of the chloroplast in Chlamydomonas. The normal green cell. Journal Biophysical and Biochemical Cytology, 3, pp. 463-488. https://doi.org/10.1083/jcb.3.3.463

54. Schmidt, M., Gessner, G., Luff, M. (2006). Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell., 18 (8), pp. 1908-1930. https://doi.org/10.1105/tpc.106.041749

55. Shank, K.J., Su, P., Brglez, I., Boss, W.F., Dewey, R.E. & Boston, R.S. (2001). Induction of lipid metabolic enzymes during the endoplasmic reticulum stress response in plants. Plant Physiology, 126, pp. 267-277. https://doi.org/10.1104/pp.126.1.267

56. Sharma, K.K., Schuhman, H. & Schenk, P.M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5 (5), pp. 1532-1553. https://doi.org/10.3390/en5051532

57. Siaut, M., Cuine, S., Cagnon, C., Fessler, B., Nquyen, M., Carrier, P., Beyly, A., Beisson, F., Triantaphylides, C., Li-Beisson, Y. & Peltier,G. (2011). Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology, 11, pp. 7-22. https://doi.org/10.1186/1472-6750-11-7

58. Siloto, M.P., Findlay, K., Lopez-Villalobos, A., Yeang, E.C., Nykiforuk, C.L. & Moloney, M.M. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis. Plant Cell., 18, pp. 1961-1964.

59. Singh, A., Nigam, P.S. & Murphy, J.D. (2011). Mechanism and challenges in commercialisation of algal biofuels. Bioresource Technology, 102, pp. 26-34. https://doi.org/10.1016/j.biortech.2010.06.057

60. Small, D. (1968). A classification of biologic lipids based upon their interaction in aqueous systems. Journal of the American Oil Chemists Society, 45, pp. 108-119. https://doi.org/10.1007/BF02915334

61. Stepanov, S.S. & Zolotareva, E.K. (2011). The effect of methanol on photosynthetic activity and productivity Chlamydomonas reinhardtii Dang. (Chlorophyta). International Journale on Algae, 21 (2), pp. 178-190.

62. Stepanov, S.S. & Zolotareva, E.K. (2015). Methanol-induced stimulation of growth, intracellular amino acids, and protein content in Chlamydomonas reinhardtii. Journal of Applied Phycology, 27 (4), pp.1509-1516. https://doi.org/10.1007/s10811-014-0445-9

63. Tauchi-Sato, K., Ozeki, S., Houjou, T., Taguchi, R. & Fujimoto, T. (2002). The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. Journal of Biological Chemistry, 277, pp. 44507-44512. https://doi.org/10.1074/jbc.M207712200

64. Thiele, C. & Spandi, J. (2008). Cell biology of lipid droplets. Curr. Opin. Cell Biol., 20, pp. 378-386. https://doi.org/10.1016/j.ceb.2008.05.009

65. Thompson, G. (1996). Lipids and membrane function in green algae. Biochimica et Biophysica Acta, 1302, pp. 17-45. https://doi.org/10.1016/0005-2760(96)00045-8

66. Walther, T.C. & Farese, R.V. (2009). The life of lipid droplets. Biochimica et Biophysica Acta, 1791, pp. 459-466. https://doi.org/10.1016/j.bbalip.2008.10.009

67. Wang, Z.T., Ullrich, N., Joo, S., Waffenshmidt, S. & Goodenough, U. (2009). Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryotic Cell, 8, pp. 1856-1868. https://doi.org/10.1128/EC.00272-09

68. Wasw, N., Black, P., Stanley, B. & DiRusso, C. (2014). Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. Journal of Proteome Research, 13, pp. 1373-1396. https://doi.org/10.1021/pr400952z

69. Work, V.H., Radakovits, R., Jinkerson, R.E., Meuser, J.E., Elliott, L.G., Vinyard, D.G., Laurens, L.M., Dismukes, G.C. & Posewitz, M.C. (2010). Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryotic Cell, 9, pp. 1251-1261. https://doi.org/10.1128/EC.00075-10

70. Zabawinska, C., Van den Koornhuyse, N.D., Hulst, C., Schlichting, R., Giersch, C., Delrue, B., Lacroix, J.M., Preiss, J. & Ball. S. (2001). Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. Journal of Bacteriology, 183 (3), pp. 1069-1077. https://doi.org/10.1128/JB.183.3.1069-1077.2001

71. Zolotareva, E.K., Shniukova, E.I. & Podorvanov, V.V. (2010). Microalgae as hydrogen producers. International Journale on Algae, 12 (3), pp. 199-220. https://doi.org/10.1615/InterJAlgae.v12.i3.10