The review on genetic study and breeding use of wheat-rye translocations for the purpose of genetic improvement of winter wheat Triticum aestivum L. has been present. The basic methods of identification and peculiarities of translocations inheritance were considered. Genetic sources of resistance to biotic and abiotic factors from wild grasses were analyzed. It was shown the possible negative impact of the translocations to reduce the quality of flour as well as their weighty significance in winter wheat breeding on productivity and resistance to environmental stress factors. The experience of developing new winter wheat varieties with translocations that occupy large sown area was described.
Keywords: bread winter wheat, wheat-rye translocation, source of resistance, grain quality, interspecific hybridization
Full text and supplemented materials
Free full text: PDFReferences
1. Belan, I.A., Rosseeva, L.P. & Rosseev, V.M. (2012). The study of economically valuable and adaptive traits in the lines of the spring soft wheat variety Omskaya 37, carrying translocations 1RS / 1BL and 7DL / 7Ai. Vavilov Journal of Genetics and Breeding, 16 (1), pp. 178-186 [in Russian].
2. Belan, I.A., Rosseeva, L.P. & Trubacheeva, N.V. (2010). Features of economically valuable traits of spring soft wheat varieties Omskaya 37, carrying a wheat-rye translocation 1RS.1BL. Vestnik VOGiS, 14 (4), pp. 632-640 [in Russian].
3. Vlasenko, V.A. & Kadhim, A.D. (2012). Resistance of commercial winter wheat varieties against brown rust under conditions of the north-eastern forest-steppe of Ukraine. Vysnyk Sumskogo natsionalnogo agrarnogo universitetu, 2 (23), pp. 161-167 [in Russian].
4. Vlasenko, V.A., Kolyuchiy, V.T., Borsuk, G.Yu. & Zhivotkov, L.O. (2000). Selection-genetic characteristic of myronivian varieties of winter wheat. Vysnyk agrarnoyi nauki. Spetsvypusk: Stan i perspektyvy selektsiyi, No. 12, pp. 27-28 [in Ukrainian].
5. Vlasenko, V.A. (2008). Formation of the maternal material for adaptive selection of species and high-grade varieties of wheat in the mind of the Steppe of Ukraine: (Unbublished candidate thesis). Odessa [in Ukrainian].
6. Dorofeev, V.F., Yakubtsiner, M.M. & Rudenko, M.I. (Eds.). (1976). Wheat of world. Leningrad: Kolos [in Russian].
7. Dubrovna, O.V., Morgun, B.V. & Bavol, A.V. (2014). Wheat biotechnology: Cell selection and genetic engineering. Kyiv: Logos [in Ukrainian].
8. Kozub, N.A., Sozinov, I.A. & Sobko, T.A. (2010). Identification of rye translocations in winter soft wheat varieties Bogdanka and Syntetik. Nauchnyie vedomosti Belgos.un-ta. Estestvennyie nauky, 12, No. 15(86), pp. 1-7 [in Russian].
9. Kozub, N.A., Sozinov, I.A. & Kolyuchiy V.T. (2005). Identifications 1AL/1RS translocations from the varieties of wheat wheat. Cytology and Genetics, 39, No. 4, pp. 20-24 [in Ukrainian].
10. Kozub, N.A., Sozinov, I.A., Kolyuchiy V.T. & Sozinov, A.A. (Ed.). (2006). Varieties of soft wheat of Ukrainian selection with rye 1BL/1RS and 1AL/1RS translocations. Zbirnyk naukovyh prats. Ukrayinske tovarystvo genetikiv i selektsioneriv im. M.I. Vavilova. Kyiv: Logos [in Russian].
11. Kozub, N.A., Sozinov, I.A. & Sozinov, A.A. (2001). Conjugacy of 1BL / 1RS translocation with qualitative and quantitative characters in soft wheat T. aestivum. Cytology and Genetics, 35, No. 5, pp. 74-80 [in Russian].
12. Kolyuchaya, G.S. & Kolyuchiy, V.T. (1988). Spontaneous mutability of winter wheat varieties containing 1B-1R chromosomal substitution or translocation from rye. The progress of winter wheat breeding as a factor in the intensification of grain production. Sb. nauch. tr. Myron. NII selektsii i semenovod. pshenytsyi, pp. 32-34 [in Russian].
13. Krasylova, N.M., Adonina, I.G., Silkova, O.G. & Shumnyiy, V.K. (2011). Features of the transfer of rye chromosome 2R when backing wheat-rye substituted 2R (2D) lines by different varieties of bread wheat. Vavilov Journal of Genetics and Breeding, 15 (3), pp. 554-562 [in Russian].
14. Lapochkina, I.F., Solomatin, D.A. & Serezhkina, G.V. (1996). Soft wheat lines with genetic material Aegilops speltoides Tausch. Genetika, 32(12), pp. 1651-1656 [in Russian].
15. Lytvinenko, N.A., Adamovskaya, V.G., Vovchuk, S.V. & Biryukova, S.A. (1999). Analysis of the content of trypsin inhibitors in F2 - F3 hybrids and its relationship with the protein content of winter wheat grains. Cytology and Genetics, 33, No. 2, pp. 33-38 [in Russian].
16. Morgun, V.V. (2011). Achievements of the Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine (up to 65th anniversary from the day of foundation). Fiziologiya i biokhimiya kulturnyih rastenii, 43, No. 3, pp. 187-211 [in Ukrainian].
17. Morgun, V.V., Sanin, E.V. & Shvartau, V.V. (2015). The club of 100 centners. Modern varieties and optimum systems of nutrition and protection of winter wheat. Kyiv: Logos [in Ukrainian].
18. Morgun, B.V., Stepanenko, A.I. & Chugunkova, T.V. (2014). Molecular determination of localization of rhizome translocations in soft wheat varieties and their cytological characteristics. Fiziol. rast. genet., 46, No. 4, pp. 319-324 [in Ukrainian].
19. Morgun, B.V. & Tischenko, E.N. (2014). Molecular biotechnology to improve the resistance of cultivated cereals to osmotic stress. Kyiv: Logos [in Russian].
20. Motsnyiy, I.I., Chebotar, S.V. & Sudarchuk, L.V. (2012). Identification of substituted (1B) 1R lines of winter wheat by cytological and molecular genetic methods. Vavilov Journal of Genetics and Breeding, 16 (1), pp. 217-223 [in Russian].
21. Radchenko, E.E. (2012). Genetic diversity of grain crops for resistance to common cereal graft. Trudy po prykladnoy botanike, genetike i selektsii. SPb.: VIR, 169, pp. 72-95 [in Russian].
22. Rybalka, O.I., Morgun, V.V., Morgun, B.V. & Pochynok, V.M. (2015). Agronomic potential and perspectives of the triticale. Fiziol. rast. genet., 47, No. 2, pp. 95-111 [in Ukrainian].
23. Rybalka, O.I. (2011).Quality of wheat and its improvement. Kyiv: Logos [in Ukrainian].
24. Syvolap, Yu.M., Chebotar, S.V. & Sudarchuk, L.V. (2011). Detection of 1RS.1AL, 1RS.1BL and modified 1RS chromosome translocations in soft wheat breeding forms. Metodychni rekomendatsiyi. Odesa, 13 p. [in Ukrainian].
25. Silkova, O.G., Schapova, A.I. & Shumnyiy, V.K. (2008). Transfer of rye genetic material to common wheat genome using the method of intergenomic replacement of chromosomes. Vestnik VOGiS, 12 (4), pp. 654-661 [in Russian].
26. Sozinov, A.A. & Laptev, Yu. P. (1986). Genetics and harvest. Moskva: Nauka [in Russian].
27. Stepanenko, A.I., Blagodarova, O.M. & Morgun, B.V. (2014). Detection of wheat-rye translocations using DNA markers and protein electrophoresis. Visnyk ukrainskogo tovarystva henetykiv i selektsioneriv, 12 (1), pp. 78-83 [in Ukrainian].
28. Stepanenko, A.I. (2015). Development of systems of molecular genetic markers for the detection of qualitative characteristics in wheat and barley (Unpublished candidate thesis), Kyiv [in Ukrainian].
29. Timonova, E.M., Leonova, I.N. & Belan, I.A. (2012). Influence of individual sections of Triticum timopheevii chromosomes on the formation of disease resistance and quantitative signs of soft wheat. Vavilov Journal of Genetics and Breeding, 16 (1), pp. 142-159 [in Russian].
30. Topal, M.M., Golub, E.A. & Solomonov, R.V. (2013). Adaptive properties of 1AL/1RS wheat-rye translocation in F5 lines of bread winter wheat in extreme conditions of 2012 year. Goncharivski chytannya: Zbirnyk tez Mizhnarodnoyi naukovo-praktichnoyi konferentsiyi (pp. 102-104). Sumy: Sumskiy natsionalniy agrarniy universitet [in Ukrainian].
31. Trubacheva, N.V., Roseeva, L.P. & Belan, I.A. (2011). Features of varieties of spring soft wheat of Western Siberia, carrying wheat-rye translocation 1RS.1BL.Genetika, 47 (1), pp. 18-24 [in Russian].
32. Anamthawat-Jonsson, K., Bodvarsdottir, S.K., Bragason, B.Th., Gudmundsson, J., Martin, P.K. & Koebner, R.M.D. (1997). Wide hybridization between species of Triticum L. and Leymus Hochst. Euphytica, 93, pp. 293-300. https://doi.org/10.1023/A:1002965322262
33. Berzonsky, W.A., Clements, R.L. & Lafever, H.N. (1991). Identification of 'Amigo' and 'Kavkaz' translocations in Ohio soft red winter wheats (Triticum aestivum L.). Theoretical and Applied Genetics, 81, pp. 629-634. https://doi.org/10.1007/BF00226729
34. Berzonsky, W.F. & Francki, G. (1999). Biochemical, molecular and cytogenetic technologies for characterizing 1RS in wheat: a review. Euphytica, 108, pp. 1-15. https://doi.org/10.1023/A:1003638131743
35. Bluthner W.D. & Merrin D. (1977). Chromosomen substitutionen und-translokationen zwischen Weizen und Roggen und deren Bedeutung fur die Zuchtung. Arch. Zucht., 7, pp. 15-27.
36. Brenchley, R. & Pheifer, M. (2012). Analisis of the bread wheat genome using whole genome shotgun sequencing. Nature, 491 (7426), pp. 705-710. https://doi.org/10.1038/nature11650
37. Devos, K.M., Atkinson, M.D., Chinoy, C.N., Francis, H.A., Harcourt, R.L., Koebner, R.M.D., Liu, C.J., Masojc, P., Xie, D.X. & Gale, M.D. (1993). Chromosomal rearrangements in the rye genome relative to that wheat. Theoretical and Applied Genetics, 85, pp. 673-680. https://doi.org/10.1007/BF00225004
38. Dyck, P.L., Samborski, D.J. & Anderson, R.G. (1966). Inheritance of abult leaf rust resistance derived from the common wheat varieties Exhange and Frontana. Canadian Journal of Genetics and Cytology, 8, pp. 665-671. https://doi.org/10.1139/g66-082
39. Ehdaie, B. & Waines, J.G. (1992). Heat resistance in wild Triticum and Aegilops. Journal of Genetics and Breeding, 46 (3), pp. 221-228.
40. Ehdaie, B., Whitkus, R.W. & Waines, J.G. (2003). Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat 'Pavon'. Crop Science, 43, pp. 710-717. https://doi.org/10.2135/cropsci2003.0710
41. Forsstrom, P.O., Merker, A. & Schwarzacher, T. (2002). Characterization of mildew resistant wheat-rye substitution lines and identification of an inverted chromosome by fluorescent in situ hybridization. Heredity, 88, pp. 349-355. https://doi.org/10.1038/sj.hdy.6800051
42. Forsstrom, P.O. & Merker, A. (2001). Sources of wheat powdery mildew resistance from wheat-rye and wheat-leymus hybrids. Hereditas, 134, pp. 115-119. https://doi.org/10.1111/j.1601-5223.2001.00115.x
43. Friebe, B., Jiang, J., Raupp, W.J. & Mcintosh, R. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 91, pp. 59-87. https://doi.org/10.1007/BF00035277
44. Friebe, B., Raupp, W.J. & Gill, B.S. (2001, June). Alien genes in wheat improvement. Wheat in Global Environmentl. Proc. 6th Int. Wheat Conf., Budapest, Hungary, pp. 709-720. https://doi.org/10.1007/978-94-017-3674-9_95
45. Gonzales, J.M., Hueros, G., Gomes, E. & Sanz, J.C. (1990). Genetic mapping between Gli-B1 locus and a telomeric C-heterochromatin band in wheat. Theoretical and Applied Genetics, 80, pp. 791-794. https://doi.org/10.1007/BF00224193
46. Graybosch, R.A., Lee, J.-H., Peterson, C.J., Porter, D.R. & Chung, O.K. (1999). Genetic, agronomic and quality comparisons of two 1AL.1RS wheat-rye chromosomal translocations. Plant Breeding, 118, pp. 125-130. https://doi.org/10.1046/j.1439-0523.1999.118002125.x
47. Graybosch R.A., Peterson C.J., Hansen L.E. & Worall, D. (1993). Comparative flour quality and protein characteriscics of 1BL/1RS and 1AL/1RS wheat-rye translocation lines. Journal of Cereal Science, 17, pp. 95-106. https://doi.org/10.1006/jcrs.1993.1010
48. Gupta, R.B. & Shepherd, K.W. (1992). Identification of rye chromosome 1R translocations and substitutions in hexaploid wheats using storage proteins as genetic markers. Plant Breeding, 109, pp. 130-140. https://doi.org/10.1111/j.1439-0523.1992.tb00163.x
49. Hanusova, R., Hsam, S.L.K., Bartos, P. & Zeller, F.J. (1996). Supression of powdery mildew resistance gene Pm8 in Triticum aestivum L. (common wheat) cultivars carrying wheat-rye translocation T1BL.1RS. Heredity, 77, pp. 383-387. https://doi.org/10.1038/hdy.1996.157
50. Hoffmann, B. (2008). Alteration of drought tolerance of winter wheat caused by translocation by rye chromosome segment 1RS. Cereal Research Communications, 36, pp. 269-278. https://doi.org/10.1556/CRC.36.2008.2.7
51. Kattermann, G. (1937). Zur Cytologie halmbehaarter Stamme aus Weizen roggenbastardierung. Zuechter, 9, pp.196-199. https://doi.org/10.1007/BF01884284
52. Kim, W., Jonson, P.S., Baenziger, P.S. & Lukaszewski, A.J. (2004). Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Science, 44, pp.1254-1258. https://doi.org/10.2135/cropsci2004.1254
53. Landjeva, S., Korzun, V., Tsanev, V., Vladova, R. & Ganeva, G. (2006). Distribution of the wheat-rye translocation 1BL.1RS among bread wheat varieties of Bulgaria. Plant Breeding, 125, pp. 102-104. https://doi.org/10.1111/j.1439-0523.2006.01142.x
54. Lee, J.H., Graybosh, R.A. & Peterson, C.G. (1995). Qality and biochemical effects of a 1BL/1RS wheat-rye translocation in wheat. Theoretical and Applied Genetics, 90, pp. 105-112. https://doi.org/10.1007/BF00221002
55. Lein, A. (1973). Introgression of a rye chromosome to wheat strains by Georg Riebesel-Salzmunde after 1926. Proc. EUCARPIA Symp. on Triticale. Leningrad, pp. 158-167.
56. Lukaszewski, A.J. (1990). Frequency of 1RS.1AL and 1RS.1BL translocations in United States wheat. Crop Science, 30, pp. 1151-1153. https://doi.org/10.2135/cropsci1990.0011183X003000050041x
57. Lukaszewski, A.J., Gustafson, J.P. & Apolinarska, B. (1982). Transmission of chromosomes through the eggs and pollen of triticale w wheat F1 hybrids. Theoretical and Applied Genetics, 63, pp. 49-55. https://doi.org/10.1007/BF00303489
58. Mcintosh, R.A., Hart, G. & Gale, M. (Eds.). (1993). Catalogue of gene symbols for wheat. Proc. of the 8th Int. Wheat Genet. Symp., Beijing, China, pp. 1333-1500.
59. Mcintosh, R.A., Yamazaki, Y., Devos, K.M., Dubcovsky, J. & Rogers, W.J. (Eds). (2003) Catalogue of gene symbols for wheat. Proc. of the 10th Int. Wheat Genet. Symp., Paestum, Italy, pp. 1-6.
60. Meltz, G., Schlegel, R. & Thiele, V. (1992). Genetic linkage map of rye. Theoretical and Applied Genetics, 83, pp. 33-45. https://doi.org/10.1007/BF00223842
61. Merker, A. (1984). The rye genome in wheat breeding. Hereditas, 100, pp. 183-191. https://doi.org/10.1111/j.1601-5223.1984.tb00118.x
62. Merker, A. (1992). The Triticeae in cereal breeding. Hereditas, 116, pp. 277-280. https://doi.org/10.1111/j.1601-5223.1992.tb00836.x
63. Moonen, J.H. & Zeven, A.C. (1984). SDS-PAGE of the high-molecular weight subunits of wheat glutenin and the characterization of 1R(1B) substitution and 1BL/1RS translocation lines. Euphytica, 33, pp. 3-8. https://doi.org/10.1007/BF00022742
64. Morgun, B.V., Stepanenko, A.I., Stepanenko, O.V. & Bannikova, M.O. (2016). Implementation of molecular systems for identification of genetic polymorphism in winter wheat to obtain high-performance specialized varieties. Science and Innovation, 12 (2), pp. 40-56 https://doi.org/10.15407/scin12.02.040
65. Mukai, Y. & Gill, B.S. (1991). Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome, 34, pp. 448-452. https://doi.org/10.1139/g91-067
66. O'mara, J.G. (1947).The substitution of a specific Secale cereale chromosome for a specific Triticum aestivum chromosome. Genetics, 32, pp. 99-100.
67. Rabinovich, S.V. (1998). Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica, 100, pp. 323-340. https://doi.org/10.1023/A:1018361819215
68. Rahmatov, M. (2013).Sources of resistance to yellow rust and stem rust in wheat-alien introgressions. Introductory Paper at the Faculty of Landscape Planning, Horticulture and Agricultural Science: Swedish Univ. Agricult. Sci., No. 3, pp.1-64.
69. Riley, R. & Chapman, V. (1958). The production and phenotypes of wheat-rye chromosome addition lines. Heredity, 12, pp. 301-315. https://doi.org/10.1038/hdy.1958.31
70. Schlegel, R. (2015). Current list of wheats with rye and alien introgression. V04-15, pp. 1-18. http: // www.rye-gene-map.de/rye-introgression
71. Schlegel, R. & Korzun, V. (1997). About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breeding, 116, pp. 537-540. https://doi.org/10.1111/j.1439-0523.1997.tb02186.x
72. Sharma, S., DeMason, D.A., Ehdaie, B., Lukaszewski, A.J. & Waines, J.G. (2010). Dosage effect of the short arm of chromosome 1 of rye on root morphology and anatomy in bread wheat. Journal of Experimental Botany, 61, pp. 2623-2633. https://doi.org/10.1093/jxb/erq097
73. Sharma, S., Xu, S.Z., Ehdaie, B., Hoops, A., Close, T.J., Lukaszewski, A.J. & Waines, J.G. (2011). Dissection of QTL effects for root traits using a chromosome armspecific mapping population in bread wheat. Theoretical and Applied Genetics, 122, pp. 759-769. https://doi.org/10.1007/s00122-010-1484-5
74. Singh, N.K., Shepherd, K.W. & McIntosh, R.A. (1990). Linkage mapping of genes for resistance to leaf, steam and stripe rust and secalins on the short arm of rye chromosome 1R. Theoretical and Applied Genetics, 80, pp. 609-616. https://doi.org/10.1007/BF00224219
75. Singh, R.P., Hodson, D.P., Julio Huerta-Espino., Jin, Y., Bhavani, S., Niau, P., Herrera-Foessel, S., Singh, P.K., Singh, S. & Govindan, V. (2011). The 61 emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual Review of Phytopathology, 49, pp. 465-482. https://doi.org/10.1146/annurev-phyto-072910-095423
76. Subramanyam, S., Smith, D.F., Clemens, J.C., Webb, M.A., Sardesai, N. & Williams, C.E. (2008). Functional characterization of HFR1, a high-mannose N-glycan-specific wheat lectin induced by hessian fly larvae. Plant Physiology, 47, pp. 1412-1426. https://doi.org/10.1104/pp.108.116145
77. Szakacs, E., Linc, G., Lang, L. & Molnar-Lang, M. (2004). Detection of the 1A/1R and 1B/1R wheat/rye translocation in new Martonvasar wheat varieties and advanced lines using in situ hybridization. Novenytermeles, 53, pp. 527-534.
78. Tabibzaden, N., Karimzaden, G. & Naghavi, M.R. (2013). Distribution of 1AL.1RS and 1BL.1RS wheat-rye translocations in Iranian wheat, using PCR based markers and SDS-PAGE. Cereal Research Communications 41 (3), pp. 458-467. https://doi.org/10.1556/CRC.2013.0023
79. Tanner, D.G. & Reinbergs, E. (1982). Genetic analysis of the tripsin inhibitor activity of triticale and rye. Pflanzenzuchtg, 88, pp. 177-184.
80. Tsunewaki, K. (1964). Genetic studies of a 6x-derivative from an 8x-Triticale. Canadian Journal of Genetics and Cytology, 6, pp.1-11. https://doi.org/10.1139/g64-001
81. Valkoun, J., Hammer, K., Kucerova, D. & Bartos, P. (1985). Disease resistance in the genus Aegilops L. -stem rust, leaf rust and powdery mildew. Kultur Pflanze., 33, pp. 133-153. https://doi.org/10.1007/BF01997267
82. Zeller, F.J. (1973). 1B/1R wheat-rye substitutions and translocations. Proc. 4th Int. Wheat Genet. Symp. Columbia, USA, pp. 209-221.
83. Zhao, R., Wang, H., Xiao, J. & Bie, T. (2013). Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia vilosa. Theoretical and Applied Genetics, 126 (12), pp. 2921-2930. https://doi.org/10.1007/s00122-013-2181-y
84. Zhou, Y. (2007). Genetic improvement of grain yield and associated traits in the Northern China winter wheat region from 1960 to 2000. Crop Science, 47, pp. 245-252. https://doi.org/10.2135/cropsci2006.03.0175