Fiziol. rast. genet. 2016, vol. 48, no. 4, 298-309, doi: https://doi.org/10.15407/frg2016.04.298

Physiological basis of high-yielded cereals nutrition

Schwartau V.V., Mykhalska L.M.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine
  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The review is devoted to the basics of plant nutrition, contributing to the disclosure of genetic potential productivity of wheat. Development of direction in the Department of Physiology of Plant Nutrition of the Institute of Plant Physiology and Genetics NAS of Ukraine and the role of nutrition in the formation of stable high yields, as well as in further increasing the productivity of grain cereals are considered.

Keywords: history of physiology of plant nutrition development, ionomics, wheat

Fiziol. rast. genet.
2016, vol. 48, no. 4, 298-309

Full text and supplemented materials

Free full text: PDF  

References

1. Morgun, V.V., Sanin, Ye.V. & Schwartau, V.V. (2015). Club 100 centners. Modern varieties, and optimal nutrition and protection systems of winter wheat. Kyiv: Logos [in Ukrainian].

2. Morgun, V.V., Schwartau, V.V. & Kiriziy, D.A. (2010). Physiological basis of the formation of high productivity of cereals. Fiziologia i biokhimia kult. rasteniy 42, No. 5, pp. 371-392 [in Russian].

3. Situation due to the lack of food security in the world. (2014). FAO [in Russian].

4. Application of Physiology in Wheat Breeding. Mexico, D.F.: CIMMYT. Translation in Russian, Morgun, V.V. (Ed.). (2007). Kyiv: Logos.

5. Schwartau, V.V. & Mykhalska, L.M. (2013). Herbicides. Physico-chemical and biological properties. Kyiv: Logos [in Ukrainian].

6. Schwartau, V.V. & Mykhalska, L.M. (2013). Herbicides. Physiological basis of regulation of phytotoxicity. Kyiv: Logos [in Ukrainian].

7. Schwartau, V.V. & Guralchuk, J.Z. (2009). Mineral fertilizers in Ukraine. Kyiv: Logos [in Ukrainian].

8. Araus, J.L., Ferrio, J.P., Buxo, R. & Voitas, J. (2006). The historical perspective of dryland agriculture: lessons from 10000 years of wheat cultivation. J. Exp. Bot., 58, No. 2, pp. 131-145. https://doi.org/10.1093/jxb/erl133

9. Armour, T., Jamieson, P. D., Nicholls, A. & Zyskowski, R. (2004). Breaking the 15 t/ha wheat yield barrier. New directions for a diverse planet: Proceedings of the 4th Intern. Crop Sci. Congr., Brisbane, Australia, www.cropscience.org.au.

10. Barraclough, P.B., Howartha, J.R., Jonesa, J., Lopez-Bellidob, R., Parmara, S., Shepherda, C.E. & Hawkesforda, M.J. (2004). Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement. Eur. J. Agronomy, 33, pp. 1-11. https://doi.org/10.1016/j.eja.2010.01.005

11. Barraclough, P.B., Lopez-Bellido R. & Hawkesford M.J. (2014). Genotypic variation in the uptake, partitioning and remobilisation of nitrogen during grain-filling in wheat. Field Crops Res., 156, pp. 242-248. https://doi.org/10.1016/j.fcr.2013.10.004

12. Baxter, I.R., Vitek, O., Lahner, B., Muthukumar, B., Borghi, M., Morrissey, J., Guerinot, M.L. & Salt, D.E. (2008). The leaf ionome as a multivariable system to detect a plant's physiological status. PNAS, 105 (33), pp. 12081-12086. https://doi.org/10.1073/pnas.0804175105

13. Chalmers, H. (2003). Record wheat crop at 16 t/ha. Pg. 12. Rural News (NZ), Iss. 307.

14. Clemens, S., Palmgren, M.G. & Kramer, U. (2002). A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci., 7, pp. 309-315. https://doi.org/10.1016/S1360-1385(02)02295-1

15. Dyson, T. (1999). World food trends and prospects to 2025. Proc. Natl. Acad. Sci. USA, 96, pp. 5929-5936. https://doi.org/10.1073/pnas.96.11.5929

16. Evans, L.T. (1998). Feeding the 10 Billion. Plants and Population Growth. London: Cambridge Univ. Press.

17. FAOSTAT (http: // faostat.fao.org/site/291/default.aspx).

18. Fertilizer Use by Crop in Ukraine. (2005). Rome: FAO.

19. Grennan, A.K. (2009). Identification of genes involved in metal transport in plants. Plant Physiol. 149, pp. 1623-1624. https://doi.org/10.1104/pp.109.900287

20. Halford, N.G. (2012). Toward two decades of plant biotechnology: successes, failures, and prospects. Food and Energy Security, 1, pp. 9-28. https://doi.org/10.1002/fes3.3

21. Hawkesford, M.J., Araus, J.-L., Park, R., Calderini, D., Miralles, D., Shen, T., Zhang, J. & Parry, M.A. J. (2013). Prospects of doubling global wheat yields. Food and Energy Security, 2 (1), pp. 34-48. doi: 10.1002/fes3.15. https://doi.org/10.1002/fes3.15

22. Hawkesford, M.J. (November, 2012). Improving Nutrient Use Efficiency in Crops. eLS 2012, John Wiley & Sons Ltd: Chichester. http://www.els.net. https://doi.org/10.1002/9780470015902.a0023734

23. Hawkesford, M.J., Parmar, S. & Buchner, P. (2012). Mineral composition analysis: measuring anion uptake and anion concentrations in plant tissues. Methods in Molecular Biology: Plant Mineral Nutrition. Humana Press, USA, pp. 109-119.

24. Hawkesford, M.J. (2014). Reducing the reliance on nitrogen fertiliser for wheat production. J. Cereal Sci., 59. pp. 276-283. https://doi.org/10.1016/j.jcs.2013.12.001

25. Hoagland, D.R. & Davis, A.R. (1929). The intake and accumulation of electrolytes by plant cells. Protoplasma, 6, pp. 610-626. https://doi.org/10.1007/BF01604843

26. Lahner, B., Gong, J., Mahmoudian, M., Smith, E.L., Abid, K.B., Rogers, E.E., Guerinot, M.L., Harper, J.F., Ward, J.M., McIntyre, L., Schroeder, J.I. & Salt, D.E. (2003). Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat. Biotechnol., 21 (10), pp. 1215-1221. https://doi.org/10.1038/nbt865

27. Marschner, H. (1995). Mineral nutrition of higher plants, 2nd Edn. London: Acad. Press.

28. Mayer, J.E., Pfeiffer, W.H. & Beyer, P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol., 11, pp. 166-170. https://doi.org/10.1016/j.pbi.2008.01.007

29. Salt, D.E., Baxter, I. & Lahner, B. (2008) Ionomics and the study of the plant ionome. Ann. Rev. Plant Biol., 59, pp. 709-733. https://doi.org/10.1146/annurev.arplant.59.032607.092942

30. Schachtman, D.P. & Shin, R. (2006). Nutrient sensing and signaling: NPKS. Ann. Rev. Plant Biol., 58. pp. 47-69. https://doi.org/10.1146/annurev.arplant.58.032806.103750

31. Shewry, P.R., Hawkesford, M.J., Piironen, V., Lampi, A.M., Gebruers, K., Boros, D., Andersson, A.A., ├ůman, P., Rakszegi, M., Bedo, Z. & Ward, J.L. (2013). Natural variation in grain composition of wheat and related cereals. J. Agr. Food Chem., 61 (35), pp. 8295-8303. https://doi.org/10.1021/jf3054092

32. Rea, P.A. (2003). Ion genomics. Nature Biotechnol., 21, pp. 1149-1151. https://doi.org/10.1038/nbt1003-1149

33. Usherwood, N.R. (2000). High yield wheat in the Eastern U.S. Better Crops., 84, No. 1, p. 30.

34. Watanabe, T., Broadley, M.R., Jansen, S., White, P.J., Takada, J., Satake, K., Takamatsu, T., Tuah, S.J. & Osaki, M. (2007). Evolutionary control of leaf element composition in plants. New Physiol., 174 (3), pp. 516-523. https://doi.org/10.1111/j.1469-8137.2007.02078.x

35. Zhu, C., Naqvi, S., Gomez-Galera, S., Pelacho, A.M., Capell, T. & Christou, P. (2007). Transgenic strategies of nutritional enhancement of plants. Trends Plant Sci., 12, pp. 548-555. https://doi.org/10.1016/j.tplants.2007.09.007