Fiziol. rast. genet. 2016, vol. 48, no. 4, 279-297, doi: https://doi.org/10.15407/frg2016.04.279

Genetic consequences of radionuclide contamination of the environment after the accident at Chornobyl nuclear power plant

Morgun V.V., Yakymchuk R.A.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The results of investigations of  genetic consequences of the accident at Chornobyl NPP, which give a notion  about the initial mutational processes caused by radiation in the individual organisms and natural ecosystems are summarized and analyzed. Despite the 30-year post-accident period and the dose decrease in the alienation zone of Chornobyl NPP, mutational variability of living organisms continues to remain at a high level. This requires the necessity to carry out further all-level testing of the genetic consequences of the environmental contamination with radio nuclides considering their effect on coming generations.

Keywords: Chornobyl NPP, radionuclides contamination, mutational variability, genetic consequences

Fiziol. rast. genet.
2016, vol. 48, no. 4, 279-297

Full text and supplemented materials

Free full text: PDF  

References

1. Abramov, V.I., Rubanovich, A.V. & Shevchenko, V.A. (2005). Genetic effects of low doses of chronic exposure of emerging seeds. Genetika, 41 (9), pp. 1244-1250 [in Russian].

2. Akleev, A.V. (2009). Tissue responses to chronic ionizing radiation. Radiation Biology. Radioecology, 49, No. 1, pp. 5-20 [in Russian].

3. Antonov, V.P. (1987). Radiation environment and its socio-psychological aspects. Kiev: Znanye [in Russian].

4. Artyuhov, V.G., Kalaev, V.N. & Sadko, A.D. (2004). Influence of radioactive irradiation of maternal trees of pedunculate oak (Quercus robur L.) on cytogenetic parameters of seed progeny (long-term effects). Vestnyk Voronezhskogo gosudarstvennogo universiteta. Ser. Fiz.-mat. No. 1, pp. 121-128 [in Russian].

5. Ahaladze, M.G. (1998). Biological age and Chernobyl accident: results of transverse and longitudinal studies. Theses Report of the 2nd International Conference "The Long-Term Medical Implications of the Chernobyl Disaster". Kiev: Chernobylinterinform [in Ukrainian].

6. Ahmatulyna, N.B. (2005). Long-term effects of radiation and induced genome instability. Radiation Biology. Radioecology, 5, No. 6, pp. 680-687 [in Russian].

7. Bilanych, M.M. & Nikolaichuk, V.I. (2008). Lead, cobalt and zinc in the soils of the Zakarpatska region. Ekolohiia dovkillia ta bezpeka zhyttiediialnosti, No. 3, pp. 19-26 [in Ukrainian].

8. Burdenyuk-Tarasevich, L.A. (2011). Long-term effects of chronic irradiation of plants T. aestivum L. in the exclusion zone of the ChNPP in 1986-1987. Faktory eksperimentalnoyi evolyutsiyi organizmiv. Zbirnyk naukovyh prats Ukrayinskogo tovarystva genetikiv i selektsioneriv im. M.I. Vavilova. Kyiv: Logos [in Ukrainian].

9. Vorobtsova, I.E. (2006). Transgeneration transfer of radiation-induced genome instability. Radiation Biology. Radioecology, 46, No. 4, pp. 441-446 [in Russian].

10. Garipova, R.F. (2007). Non-stochastic inherited cell lethality in the practice of biotesting technogenic pollution as inducers of aftereffects. Genetika, 43 (3), pp. 337-342 [in Russian].

11. Geraskin, S.A., Vanina, Yu.S. & Dikarev, V.G. (2009). Genetic variability in populations of Scots pine from areas of the Bryansk region exposed to radioactive contamination as a result of the accident at the Chernobyl nuclear power plant. Radiation Biology. Radioecology, 49, No. 2, pp. 136-146 [in Russian].

12. Geraskin, S.A., Fesenko, S.V. & Aleksahin, R.M. (2006). Impact of emergency discharge of Chernobyl NPP on biota. Radiation Biology. Radioecology, 46, No. 2, pp. 178-188 [in Russian].

13. Glazko, V.I. & Glazko, T.T. (2004). Population-genetic consequences of ecological disasters (on the example of the Chernobyl accident). Visnyk agrarnoi nauki, No. 7, pp. 70-76 [in Ukrainian].

14. Glazko, V.I. (2006). Chernobyl 20 years later. Pryroda, No. 5, pp. 48-53 [in Russian].

15. Goncharova, R.Y., Ryabokon, N.I. & Slukvyn, A.M. (1998, June). Biological effects of low doses of chronic radiation. Tezy report of the 2nd International Conference "Long-term medical consequences of the Chernobyl disaster", Kiev: Chernobylinterinform [in Russian].

16. Gorova, A.I., Skvortsova, T.V. & KlimkIna, I.I. (2005). Cytogenetic monitoring of the environment and human health. Visnyk Ukrayinskogo tovarystva genetikiv i selektsioneriv, 3, No. 1-2, pp. 36-47 [in Ukrainian].

17. Grodzinskiy, D.M. & Gudkov, I.N. (2006). Radiation damage to plants in the zone of influence of the Chernobyl accident. Radiation biology. Radioecology, 46, No. 2, pp. 189-199.

18. Grodzinskiy, D.M., Kolomiets, O.D. & Burdenyuk, L.A. (1986-1999). Collection of chornobyl mutants of winter wheat. Chornobil - Kiyiv - Bila Tserkva [in Ukrainian].

19. Grodzinskiy, D.M., Kolomiets, O.D. & Kutlahmedov, Yu.A. (1991). Anthropogenic radionuclide anomaly and plants. Kiev: Lyibid [in Russian].

20. Grodzinskiy, D.M. (2000). Realities of postchornobyl period. Visnyk NAN Ukrainy, No. 7, pp. 27-35 [in Ukrainian].

21. Gudkov, I.N., Vynnichuk, M.M. (2003). Agricultural radiobiology. Zhytomir: Izd-vo Gos. agroekol. un-ta [in Russian].

22. Gudkov, D.I., Kuzmenko, M.I., Kireev, S.I. & Nazarov, A.B. (2009). Radioecological problems of aquatic ecosystems in the Chernobyl Exclusion Zone. Radiation biology. Radioecology, 49, No. 2, pp. 192-202 [in Russian].

23. Davidov, L., Gavrilyuk, Yu. & Ignatenko, O. (1998, June). Enhanced natural development in the regions of Ukraine, which gave a low dose of radio radiation from Chornobyl Aviation. Tez. report 2nd International conference "Long-term medical consequences of the Chernobyl disaster". Kiev: Chernobylinterinform [in Ukrainian].

24. Danilchenko, O.A., Sorochinskiy, B.V., Burdenyuk, L.A. & Grodzinskiy, D.M. (2006). RAPD-PCR analysis of kinship between unstable winter wheat lines (Triticum aestivum L.) and initial varieties. Dop. NAN Ukrainy, No. 5, pp. 150-154 [in Russian].

25. Demina, E.A. & Baryilyak, I.R. (2004). Chernobyl accident and acute radiation sickness. Visnyk Ukrainskogo tovarustva genetykiv i selektsioneriv, 2, No. 1, pp. 84-103 [in Russian].

26. Deryagin, V.V., Levina, S.G. & Shibkova, D.Z. (2006). Migration features and forms of 90Sr and 137Cs occurrence in the bottom sediments of some lake ecosystems of the East-Ural radioactive trace. Radiation biology. Radioecology, 46, No. 5, pp. 531-536 [in Russian].

27. Doroguntsov, S.I., Popovkin, V.A. & Stepanenko, A.V. (1992). Conceptual approaches to the development and deployment of productive forces in areas with elevated levels of radioactive contamination. Socio-economic problems of liquidation of the consequences of the Chernobyl disaster. Kiev: SOPS Ukrainy AN Ukrainy, pp. 4-21 [in Russian].

28. Dubinin, N.P. (1977). Environment mutagens and human heredity. Geneticheskie posledstviya zagryazneniya okruzhayuschey sredy. Moskva: Nauka, pp. 3-20 [in Russian].

29. Dubrova, Yu.E. (2006). Genome instability among the descendants of irradiated parents. Facts and interpretations. Genetika, 42 (10), pp. 1335-1347 [in Russian].

30. Evets, L.V., Lyalikov, S.A. & Orekhova, T.D. (1992). The biological effect of low doses of radiation on the morphological composition of peripheral blood in children. Radiobiologiya, 32 (5), pp. 627-631 [in Russian].

31. Evseeva, T.I., Maistrenko, T.A. & Geraskin, S.A. (2008). Assessment of radiation impact on coenopopulations of mouse peas from a territory contaminated with radium production waste. Radiation biology. Radioecology, 48, No. 4, pp. 493-501 [in Russian].

32. Zainulin, V.G., Moskalev, A.A. & Shaposhnikov, M.V. (2006). Genetic aspects of low-dose exposure to laboratory lines and experimental populations of Drosophila melanogaster. Radiation biology. Radioecology, 46, No. 5, pp. 547-554 [in Russian].

33. Zamulaeva, I.A., Orlova, N.V. & Smirnova, S.G. (2007). Correlation between the intracellular content of nitric oxide and the frequency of mutant lymphocytes after radiation exposure in small doses. Radiation biology. Radioecology, 47, No. 1, pp. 86-92 [in Russian].

34. Zyablitskaya, E.Ya., Geraskin, S.A., Udalova, A.A. & Spirin, E.V. (1996). Analysis of the genetic consequences of contamination of winter rye crops by radioactive fallouts of the Chernobyl NPP. Radiation biology. Radioecology, 36, No. 6, pp. 498-505 [in Russian].

35. Ivanov, V.K., Chekin, S.Yu. & Kascheev, V.V. (2007). The incidence of thyroid cancer among the liquidators of the consequences of the Chernobyl accident: the observation period 1986-2003. Radiation biology. Radioecology, 47, No. 5, pp. 517-522 [in Russian].

36. Indyik, V.M., Parnovskaya, N.V., Serkiz, Ya.I. & Dragan, Yu.I. (1991). Physiological development and cytogenetic parameters in the offspring of rats. Radiobiologiya, 31 (5), pp. 663-667 [in Russian].

37. Kovalchuk, L.E. & Orel, N.O. (2005). Transgenic plants as a model object for determining the intensity of the mutagenic background of the environment. Visnyk ukrainskogo tovarystva henetykiv i selektsioneriv, 3, No.1-2, pp.72-79 [in Ukrainian].

38. Kozubov, G.M. & Taskaev, A.I. (2002). Radiobiological studies of conifers in the area of the Chernobyl disaster. M.: IPTs "DIK" [in Russian].

39. Koryitova, A.I., Dolgova, L.G. & Mihaylov, O.F. (1987, November). Assessment of the genetic effects of industrial pollution on agricultural plants. Tezy doklada V s'ezda Vsesoyuznogo obschestva genetikov i selektsionerov im. N.I.Vavilova "Obschaya i molekulyarnaya genetika". Moskva [in Russian].

40. Kravets, E.A., Grodzinskiy, D.M. & Rozhko, I.I. (2005). Morphological asymmetry of plants as a response to the action of ionizing radiation. Agroekologichniy zhurnal, No. 3, pp. 62-66 [in Russian].

41. Mozolin, E.M., Geraskin, S.A. & Minkenova, K.S. (2008). Radiobiological effects in plants and animals of the Semipalatinsk test site (Kazakhstan). Radiation biology. Radioecology, 48, No. 4, pp. 422-431 [in Russian].

42. Morgun, V.V. & Logvinenko, V.F. (1995). Mutational selection of wheat. Kyiv: Nauk. dumka [in Russian].

43. Morgun, V.V., Logvinenko, V.F. & Tyutyun, A.I. (1993). Genetic consequences of the accident at the Chernobyl nuclear power plant on the example of winter common wheat. Fiziologiya i biokhimiya kulturnyih rasteniy, 25, No. 4, pp. 315-323 [in Russian].

44. Morgun, V.V. & Yakymchuk, R.A. (2010). Genetic consequences of the accident at the Chernobyl NPP. Kyiv: Logos [in Ukrainian].

45. Omelyanets, S.N. (1998, June). The sexual composition of the inhabitants of Ukraine and its impact on the reproductive health of the nation. Theses of the report of the 2nd International Conference "The long-term medical consequences of the Chernobyl disaster". Kiev: Chernobylinterinform [in Russian].

46. Orlov, O.O. & NadtochIy, P.P. (2005). Plutonium and americium: sources and dynamics of pollution of the biosphere, migration in soil and vegetation cover. Agroekologichniy zhurnal, No. 2, pp. 3-14 [in Ukrainian].

47. Ofitserov, M.V. & Igonina, E.V. (2009). Genetic effects of radiation exposure on the population of pine common (Pinus sylvestris L.). Genetika, 45 (2), pp. 209-214 [in Russian].

48. Petruniv, V.M. (2000). Environmental criteria for the use of new organo-mineral fertilizers. Visnyk agrarnoi nauky, No. 10, pp. 62-64 [in Ukrainian].

49. Pozolotyna, V.N. (2003). Long-term effects of radiation on plants. Ekaterinburg: Akademkniga [in Russian].

50. The health consequences of the Chernobyl accident. Results of the IHRAP pilot projects and related national programs. Summary Report. Zheneva: Medytsyna [in Russian].

51. Rapoport, I.A. (1948). Alkylation of the gene molecule. Doklad AN SSSR, 59 (6), pp. 1183-1186 [in Russian].

52. Sevankaev, A.V., Shkvarova, T.G. & Potetnya, O.I. (2005). Comparative study of structural and gene somatic mutations in workers of nuclear chemical plants. I. Study of unstable and stable chromosomal aberrations. Radiation biology. Radioecology, 45, No. 2, pp. 149-161 [in Russian].

53. Sedlerova, O. (2013). Fukushima-Chornobyl: joint work of Japanese and Ukrainian researchers. Svit, No. 29-30 [in Ukrainian].

54. Spyrydonov, S.I., Mukusheva, M.K. & Shubina, O.A. (2008). Assessment of doses to the public as a result of radioactive contamination of the territory of the Semipalatinsk test site. Radiation biology. Radioecology, 48, No. 2, pp. 218-224 [in Russian].

55. Fedotov, I.S., Kalchenko, V.A. & Igonina, E.V. (2006). Radiation-genetic consequences of exposure of the pine tree population in the Chernobyl accident zone. Radiation biology. Radioecology, 46, No. 3, pp. 268-278 [in Russian].

56. Fomina, Zh.I., Kolosentseva, N.V. & Sen, L.A. (1989, August). Cytological effects of radiation pollution of the environment in crops. Theses of the report of the All-Union Radiobiological Congress. Puschyno, 2, pp. 542-543 [in Russian].

57. Tsyibulka, N.I., Chernyish, A.F. & Tishuk, L.A. (2004). Horizontal migration of 137Cs in soil water erosion. Radiation biology. Radioecology, 44, No. 4, pp. 473-477 [in Russian].

58. The Chernobyl Disaster: Causes and Effects (Expert. Conclusion). (1993). Vol. 4. Consequences of the Chernobyl Disaster for Ukraine and Russia. Minsk: Red. zhurnala Test.

59. Shevchenko, V.A. (1989). Information materials on problems of genetics and breeding. Puschino, Iss. 1, pp. 25-30 [in Russian].

60. Shevchenko, V.V. & Grinih, L.I. (1995). Cytogenetic effects in Crepis tectorum populations growing in the Bryansk region, observed in the 7th year after the accident at the Chernobyl nuclear power plant. Radiation biology. Radioecology, 35, No. 5, pp. 720-725 [in Russian].

61. Shkvarnikov, P.K. (1990). Cytological examination of plants growing under the influence of different levels of radiation. Cytology and genetics, 24 (5), pp. 33-37 [in Russian].

62. Yablokov A.V. (2002). The myth of the safety of low doses of radiation: Atomic mythology. M.: Tsentr ekologicheskoy polityky Rossii, OOO "Proekt-F" [in Russian].

63. Yakimchuk, R.A. & Morgun, V.V. (2000). Genetic activity of low doses of physical and chemical mutagenic factors in ozimia wheat. Naukoviy visnyk Uzhgorodskogo derzhavnogo universytetu. Biologiya, No. 8, pp. 167-171 [in Ukrainian].

64. Brenner, D.J., Doll, R., Goodhead, D.T., Hall, E.J., Land, C.E., Little, J.B., Lubin, J.H., Preston, D.L., Preston, R.J., Puskin, J.S., Ron, E., Sachs, R.K., Samet, J.M., Setlow, R.B. & Zaider, M. (2003). Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. Proc. Natl. Acad. Sci. USA., 100 (24), pp. 13761-13766. https://doi.org/10.1073/pnas.2235592100

65. Copplestone, D., Johnson, M.S. & Jones, S.R. (2000). Radionuclide behaviour in coniferous woodland ecosystem: the distribution of radionuclides in soil and leaf litter. Water, Air and Soil Pollution, 122, No. 3-4, pp. 389-404. https://doi.org/10.1023/A:1005225406105

66. Geras'kin, S.A., Dikarev, V.G., Zyablitskaya, Ye.Ya., Oudalova, A.A, Spirin, Y.V. & Alexakhin, R.M. (2003). Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops. Journal of Environmental Radioactivity, 66, pp. 155-169. https://doi.org/10.1016/S0265-931X(02)00121-2

67. Glazko, V.I. & Glazko, T.T. (2005). Gene pool changes after ecological catastrophe (Chernobyl's example). Agroecological journal, No. 3, pp. 42-51.

68. Grodzinsky, D.M. (2005). Reflection of the Chernobyl catastrophe on plant world: special and general biological aspects. Agroecological journal, No. 3, pp. 4-12.

69. Hanawalt, P.C. (1998). Genomic instability: environmental invasion and the enemies within. Mutation Research, 400, No. 1-2, pp. 117-125. https://doi.org/10.1016/S0027-5107(98)00084-0

70. Kiuru, A., Auvinen, A., Luokkamaki, M., Makkonen, K., Veidebaum, T., Tewkkel, M., Rahu, M., Hakulinen, T., Servomaa, K., Rytomaa, T. & Mustonen, R. (2003). Hereditary minisatellite mutations among the offspring of Estonian Chernobyl cleanup workers. Radiatiopn Research, 159 (5), pp. 651-655. https://doi.org/10.1667/0033-7587(2003)159[0651:HMMATO]2.0.CO;2

71. Kovalchuk, O., Dubrova, Y.E. & Arkhipov, A. (2000). Wheat DNA mutation rate after Chernobyl Nature, 407, pp. 583-584.

72. Morgan, W.F. (2003). Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiation Research, 159, pp. 581-596. https://doi.org/10.1667/0033-7587(2003)159[0581:NADEOE]2.0.CO;2

73. Parshkov E.M., Sokolov V.A., Tsyb A.F. & Proshin, A.D. (2004). Radiation-induced thyroid cancer: what we know and what we really understand. International Jourrnal of Low Radiational, 1 (3), pp. 267-278. https://doi.org/10.1504/IJLR.2004.005425

74. Srecec, S., Jelenic, S. & Papes, D. (1995). Phenotypic and genotypic analysis of spike abnormality in bread wheat (Triticum aestivum L. em Thell) cv. Pitoma. Cereal Res. Communic., 23, No, 1-2, pp. 63-69