Cereal crops are the world’s main source of food. They provide more than half of the world’s total calorie needs. Sustainable access to quality cereals is important in addressing food security challenges. Soil contamination with lead (Pb) seriously threatens sustainable cereal production. In Ukraine, this problem has become particularly acute due to the intense hostilities. By inhibiting important functional groups in proteins, displacing critical metal ions, and accumulating reactive oxygen species, lead, a non-essential heavy metal, has a complicated harmful effect on plant organisms. According to studies, lead considerably reduces the germination of seeds and the growth of cereal seedlings; the degree of this effect varies according to the concentration, length of exposure, and type of plant. At high concentrations of Pb, seed germination decreases by 30—40 %, root length decreases by 45 %, and the stress resistance index decreases significantly. At the cellular level, Pb disrupts the structure and functions of photosystems, causes oxidative stress, destabilizes membranes, and loses the integrity of cellular organelles. Salicylic acid (SA), a phenolic plant hormone, plays a key role in the regulation of numerous plant physiological processes, including growth and development, photosynthesis, respiration, transpiration, and provides for the formation of defense responses, increasing the resistance of cereals to a wide range of abiotic and biotic stressors. The SA plays a special role in shaping the resistance of cereals to Pb contamination through its participation in the transmission of stress signals, antioxidant defense mechanisms and modulation of physiological processes. In this review, we present a contemporary summarization of existing data on the impact of Pb toxicity on morphophysiological and biochemical responses of major cereal crops. We also highlight the data on the mechanisms of lead ion uptake and translocation in plants, critically discuss possible strategies for phytoremediation of soils and ways to overcome the threat of lead toxicity for cereals.
Keywords: cereal crops, lead contamination, salicylic acid, growth, metabolism, tolerance
Full text and supplemented materials
Free full text: PDFReferences
1. Kosakivska, I.V., Vasyuk, V.A., Voytenko, L.V. & Shcherbatiuk, M.M. (2022). Plant hormonal system under heavy metal stress. Kyiv: M. G. Kholodny Institute of Botany https://www.botany.kiev.ua/doc/hormonal_monograph_2022.pdf [in Ukrainian].
2. Rahman, S., Hussain, Y. Li, S., Hussain, B., Khan, W.D., Riaz, L., Ashraf, M.N., Khaliq, M.A., Du, Z. & Cheng, H. (2023). Role of phytohormones in heavy metal tolerance in plants: A review Ecol. Indic., 146, 109844. https://doi.org/10.1016/j.ecolind.2022.109844
3. Xiong, T., Leveque, T., Shahid, M., Foucault, Y., Momboand, S. & Dumat, C. (2014). Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by Process Ultrafine Particles. J. Environ. Qual. 43 (5), pp. 1593-600. https://doi.org/10.2134/jeq2013.11.0469
4. Pierart, A., Shahid, M., Sѕjalon-Delmas, N. & Dumat, C. 2015. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures. J. Hazard. Mater., 289, pp. 219-234. https://doi.org/10.1016/j.jhazmat.2015.02.011
5. Sharma, P. & Dubey, R. S. (2005). Lead toxicity in plants. Braz. J. Plant Physiol., 17 (1), pp. 35-52. https://doi.org/10.1590/S1677-04202005000100004
6. Hadi, F. & Aziz, T. (2015). A mini review on lead (Pb) toxicity in plants. J. Biol. Life Sci., 6 (2), pp. 91-101. https://doi.org/10.5296/jbls.v6i2.7152
7. Scott, D.C. & Berti, W.R. (1993). Remediation of Contaminated Soils with Green Plants: An Overview. In Vitro Cell. Dev. Biol. - Plant, 29 (4), pp. 207-212. https://doi.org/10.1007/BF02632036
8. Ashraf, A., Bhardwaj, S., Ishtiaq, H., Devi, Y. K. & Kapoor, D. (2021). Lead uptake, toxicity and mitigation strategies in plants. Plant Arch., 21 (1), pp. 712-721. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.099
9. Dong, D., Zhao, X., Hua, X., Liu, J. & Gao, M. (2009). Investigation of the potential mobility of Pb, Cd and Cr (VI) from moderately contaminated farmland soil to groundwater in Northeast, China. J. Hazard. Mater., 162, pp. 1261-1268. https://doi.org/10.1016/j.jhazmat.2008.06.032
10. Saleem, M.F., Asghar, H.N., Zahir, Z.A. & Shahid, M. (2019). Evaluation of lead tolerant plant growth promoting rhizobacteria for plant growth and phytoremediation in lead contamination. Rev. Int. Contam. Ambient., 35 (4), pp. 999-1009. https://doi.org/10.20937/RICA.2019.35.04.18
11. Vasilachi, I.C., Stoleru, V. & Gavrilescu, M. (2023). Analysis of Heavy Metal Impacts on Cereal Crop Growth and Development in Contaminated Soils. Agriculture, 13, 1983. https://doi.org/10.3390/agriculture13101983
12. WHO/FAO (2016). General Standards for Contaminants and Toxins in Food and Feed. Rome: Food and Agriculture Organization.
13. Ahmad, I., Tahir, M., Daraz, U., Ditta, A., Hussain, M. B. & Khan, Z. U. H. (2020). Responses and tolerance of cereal crops to metal and metalloid toxicity. In M. Hasanuzzaman (Ed.), Agronomic Crops (pp. 235-264). Singapore: Springer. https://doi.org/10.1007/978-981-15-0025-1_14
14. Zanganeh, R., Jamei, R. & Rahmani, F. (2020). Response of maize plant to sodium hydrosulfide pretreatment under lead stress conditions at early stages of growth. Cereal Res. Commun., 49, pp. 267-276. https://doi.org/10.1007/s42976-020-00095-0
15. Leal, W., Eustachio, J., Fedoruk, M. & Lisovska, T. 2024. War in Ukraine: an overview of environmental impacts and consequences for human health. Front. Sustain. Resour. Manag. 3, 1423444. https://doi.org/10.3389/fsrma.2024.1423444
16. Solokha, M., Pereira, P., Symochko, L., Vynokurova, N., Demyanyuk, O., Sementsova, K., Inacio, M. & Barcelo, D. (2023). Russian-Ukrainian war impacts on the environment. Evidence from the field on soil properties and remote sensing. Sci. Total Environ., 902, 166122. https://doi.org/10.1016/j.scitotenv.2023.166122
17. Sethy, S. K. & Ghosh, S. (2013). Effect of heavy metals on germination of seeds. J. Nat. Sci. Biol. Med., 4(2), pp. 272-275. https://doi.org/10.4103/0976-9668.116964
18. Pourrut, B., Shahid, M., Dumat, C., Winterton, P. & Pinelli, ‹. (2011). Lead Uptake, Toxicity, and Detoxification in Plants. In: D. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology (pp. 113-136). New York: Springer. https://doi.org/10.1007/978-1-4419-9860-6_4
19. Gul, I., Manzoor, M., Silvestre,J., Rizwan, M., Hina, K., Kallerhoff, J. & Arshad, M. (2018). EDTA-assisted phytoextraction of lead and cadmium by Pelargonium cultivars grown on spiked soil. Int. J. Phytoremediation, 21 (2). pp. 101-110. https://doi.org/10.1080/15226514.2018.1474441
20. Islam, E., Yang, X., Li, T., Liu, D., Jin, X. & Meng, F. (2007). Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J. Hazard. Mater., 147 (3), pp. 806-816. https://doi.org/10.1016/j.jhazmat.2007.01.117
21. Nolan, A., Zhang, H. & McLaughlin, M.J. (2005). Prediction of Zinc, Cadmium, Lead, and Copper Availability to Wheat in Contaminated Soils Using Chemical Speciation, Diffusive Gradients in Thin Films, Extraction, and Isotopic Dilution Techniques. J. Environ. Qual., 34 (2), pp. 496-507. https://doi.org/10.2134/jeq2005.0496
22. Kanwal, A., Farhan, M., Sharif, F., Hayyat, M. U., Shahzad, L. & Ghafoor, G.Z. (2020). Effect of industrial wastewater on wheat germination, growth, yield, nutrients and bioaccumulation of lead. Sci. Rep., 10, pp. 1-9. https://doi.org/10.1038/s41598-020-68208-7
23. Yang, Y., Wei, X., Lu, J., You, J., Wang, W. & Shi, R. (2010). Lead-induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotoxicol. Environ. Saf., 73, pp. 1982-1987. https://doi.org/10.1016/j.ecoenv.2010.08.041
24. Li, C., Feng, S., Shao, Y., Jiang, L., Lu, X. & Hou, X. (2007). Effects of arsenic on seed germination and physiological activities of wheat seedlings. J. Environ. Sci., 19 (6), pp. 725-732. https://doi.org/10.1016/S1001-0742(07)60121-1
25. Yourtchi, M. S. & Bayat, H. Y. (2013). Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV). Int. J. Agric. Crop Sci., 15(6), pp. 1099-1103.
26. Ghani, A., Shah, A. U. & Akhtar, U. (2010). Effect of lead toxicity on growth, chlorophyll and lead (Pb). Pak. J. Nutri., 9, pp. 887-891. https://doi.org/10.3923/pjn.2010.887.891
27. Lavado, R. S., Porcelli, C. A. & Alvarez, R. (2001). Nutrient and heavy metal concentration and distribution in maize, soybean and wheat as affected by different tillage systems in Argentine Pampas. Soil Tillage Res. 62, pp. 55-60. https://doi.org/10.1016/S0167-1987(01)00216-1
28. He, Y., Jiang, R., & Hou, X. (2023). Responses of maize germination, root morphology and leaf trait to characteristics of lead pollution: a case study. Int. J. Coal Sci. Technol., 10 (12). https://doi.org/10.1007/s40789-023-00565-w
29. Gupta, M., Dwivedi, V., Kumar, S., Patel, A., Niazi, P. & Yadav, V.K. (2024). Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. Plant Signal. Behav., 19 (1), 2365576. https://doi.org/10.1080/15592324.2024.2365576
30. Liu, J.G., Li, K.Q., Xu, J.K. & Zhang, Z.J. (2003). Lead toxicity, uptake and translocation in different rice cultivars. Plant Sci., 165, pp. 793-802. https://doi.org/10.1016/S0168-9452(03)00273-5
31. Munzuroglu, O. & Geckil, H. (2002). Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch. Environ. Contam. Toxicol., 43, pp. 203-213. https://doi.org/10.1007/s00244-002-1116-4
32. Pirzadah, T.B., Malik, B., Tahir, I., Hakeem, K.R., Alharby, H.F. & Rehman, R.U. (2020). Lead toxicity alters the antioxidant defense machinery and modulate the biomarkers in Tartary buckwheat plants. Int. Biodeterior. Biodegrad., 151, 104992. https://doi.org/10.1016/j.ibiod.2020.104992
33. Phaniendra, A., Jestadi, D. B. & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem., 30 (1), pp. 11-26. https://doi.org/10.1007/s12291-014-0446-0
34. Gupta, D.K., Nicoloso, F.T., Schetinger, M.R.C., Rossato, L.V., Pereira, L. B., Castro, G., Srivastava Y. & Tripathi, R.D. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J. Hazard. Mater., 172 (1), pp. 479-484. https://doi.org/10.1016/j.jhazmat.2009.06.141
35. Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M. & Anjum, M.Z. (2019). Lead toxicity in plants: Impacts and remediation. J. Environ. Manage., 250, 109557. https://doi.org/10.1016/j.jenvman.2019.109557
36. Hussain, A., Abbas, N., Arshad, F.M., Akram, M., Khan, Z. I., Ahmad, K., Mansha, M. & Mirzaei, F. (2013). Effects of diverse doses of lead (Pb) on different growth attributes of Zea mays L. Agricul. Sci., 4 (5), pp. 262-265. https://doi.org/10.4236/as.2013.45037
37. McComb, J., Hentz, S., Miller, G., Begonia, M. & Begonia, G.B. (2012). Effects of lead on plant growth, lead accumulation and phytochelatin contents of hydroponically-grown Sesbania exaltata. World Environ., 2 (3), pp. 38-43. https://doi.org/10.5923/j.env.20120203.04
38. Ali, B., Mwamba, T.M., Gill, R.A., Yang, C., Ali, S., Daud, M.K., Wu, Y. & Zhou, W. (2014). Improvement of element uptake and antioxidative defense in Brassica napus under lead stress by application of hydrogen sulfide. Plant Growth Regul., 74, pp. 261-273. https://doi.org/10.1007/s10725-014-9917-9
39. Hu, X., Khan, I., Jiao, Q., Zada, A. & Jia, T. (2021). Chlorophyllase, a Common Plant Hydrolase Enzyme with a Long History, Is Still a Puzzle. Genes, 12, 1871. https://doi.org/10.3390/genes12121871
40. Navabpour, S., Yamchi, A., Bagherikia, S. & Kafi, H. (2020). Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants, 26, pp. 793-802. https://doi.org/10.1007/s12298-020-00777-3
41. Lima-Melo, Y., KПlПc, M., Aro, E.M. & Gollan, P.J. (2021). Photosystem I Inhibition, Protection and Signalling: Knowns and Unknowns. Front. Plant Sci., 12, 791124. https://doi.org/10.3389/fpls.2021.791124
42. Aslam, M., Aslam, A., Sheraz, M., Ali, B., Ulhassan, Z., Najeeb, U., Zhou, W. & Gill, R.A. (2021). Lead Toxicity in Cereals: Mechanistic Insight into Toxicity, Mode of Action, and Management. Front. Plant Sci., 11, 587785. https://doi.org/10.3389/fpls.2020.587785
43. Zeng, L.S., Liao, M., Chen, C.L. & Huang, C.Y. (2007). Effects of lead contamination on soil microbial activity and physiological indices in soil-lead-rice (Oryza sativa L.) system. Ecotoxicol. Environ. Saf., 67 (1), pp. 67-74. https://doi.org/10.1016/j.ecoenv.2006.05.001
44. Ashraf, U., Kanu, A.S., Deng, Q., Mo, Z., Pan, S., Tian, H. & Tang, X. (2017). Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice. Front. Plant Sci., 8, 259. https://doi.org/10.3389/fpls.2017.00259
45. Kosakivska, I.V., Voytenko, L.V., Vasyuk, V.A. & Shcherbatiuk, M.M. (2019). Effect of zinc on growth and phytohormones accumulation in Triticum aestivum L. priming with abscisic acid. Rep. Natl. Acad. Sci. Ukr., 11, pp. 93-99. https://doi.org/10.15407/dopovidi2019.11.093
46. Kosakivska, I.V., Babenko, L.M., Romanenko, K.O., Korotka, I.Y. & Potters, G. (2021). Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biol. Int., 45 (2), pp. 258-272. https://doi.org/10.1002/cbin.11503
47. Saltveit, M.E., (2017). Synthesis and metabolism of phenolic compounds. In E.M. Yahia (Ed.), Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd Edition (pp. 115-124), John Wiley & Sons https://doi.org/10.1002/9781119158042.ch5
48. Roychoudhury, A., Ghosh, S., Paul, S., Mazumdar, S., Das, G. & Das, S. 2016. Pre-treatment of seeds with salicylic acid attenuates cadmium chloride-induced oxidative damages in the seedlings of mungbean (Vigna radiata L. Wilczek). Acta Physiol. Plant., 38, 11. https://doi.org/10.1007/s11738-015-2027-0
49. Lorenzo, O. & Solano, R. (2005). Molecular players regulating the jasmonate signalling network. Curr. Opin. Plant Biol., 8 (5), pp. 532-540. https://doi.org/10.1016/j.pbi.2005.07.003
50. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki , K., & Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol., pp. 436-442. https://doi.org/10.1016/j.pbi.2006.05.014
51. Vicente, M.R. & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot., 62 (10), pp. 3321-3338. https://doi.org/10.1093/jxb/err031
52. Kadioplu, A., Saruhan, N., Saplam, A., Terzi, R. & Acet, T. (2010). Exogenous salicylic acid alleviates effects of long-term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul., 64 (1), pp. 27-37. https://doi.org/10.1007/s10725-010-9532-3
53. P«l, M., Janda, T., Majl«th, I. & Szalai, G. (2020). Involvement of salicylic acid and other phenolic compounds in light-dependent cold acclimation in maize. Int. J. Mol. Sci., 21 (6), 1942. https://doi.org/10.3390/ijms21061942
54. Pйerostov«, S., Dobrev, P.I., Knirsch, V., Jaroлov«, J., Gaudinov«, A., Zupkova, B., Pr«лil, I., Janda, T., Brzobohatъ, B., Skal«k, J. & Vankov«, R. (2021). Light quality and intensity modulate cold acclimation in Arabidopsis. Int. J. Mol. Sci., 22 (5), 2736. https://doi.org/10.3390/ijms22052736
55. Gтlser, F. & SШnmez, F. (2022). Effects of Mycorrhizae and Salicylic Acid on Growth, Cadmium Content and Uptake of Maize (Zea mays L.) Seedlings in Cadmium Contaminated Media. Ulus. Tar. Yaban Hay. Bilim. Derg., 8 (1), pp. 133-141. https://doi.org/10.24180/ijaws.1011361
56. Afrousheh, M., Shoor, M., Tehranifar, A. & Safari, V.R. (2015). Phytoremediation potential of copper contaminated soils in Calendula officinalis and effect of salicylic acid on the growth and copper toxicity. Int. Lett. Chem. Phys. Astron., 50, pp. 159-168. https://doi.org/10.18052/www.scipress.com/ILCPA.50.159
57. Ma, Y., He, Y., Deng, P., Zhang, S., Ding, Y., Zhang, Z., Zhang, B-Q., An, J-X., Wang, Y-R. & Liu, Y. (2023). Repurposing salicylamides to combat phytopathogenic bacteria and induce plant defense responses. Chem. Biodivers., 20 (11), e202300998. https://doi.org/10.1002/cbdv.202300998
58. Kohli, S.K., Handa, N. & Kaur, R. (2017). Role of Salicylic Acid in Heavy Metal Stress Tolerance: Insight into Underlying Mechanism. In: R. Nazar, N. Iqbal & N. Khan (Eds.), Salicylic Acid: A Multifaceted Hormone (pp. 123-144). Springer, Singapore. https://doi.org/10.1007/978-981-10-6068-7_7
59. Ahmad, I., Basra, S.M. & Wahid, A. (2014). Exogenous application of ascorbic acid, salicylic acid and hydrogen peroxide improves the productivity of hybrid maize at low temperature stress. Int. J. Agric. Biol., 16, pp. 825-830. https://doi.org/10.5897/AJB11.2266
60. Ruan, S., Xue, Q. & Tylkowska, K. (2002). The influence of priming on germination of rice (Oryza sativa L.) seeds and seedling emergence and performance in flooded soil. Seed Sci. Technol., 30, 6167.
61. Szalai, G., P«l, M., Ђrend«s, T. & Janda, T. (2016). Priming seed with salicylic acid increases grain yield and modifies polyamine levels in maize. Cereal Res. Commun., 44 (5), pp. 537-548. https://doi.org/10.1556/0806.44.2016.038
62. Emamverdian, A., Ding, Y. & Mokhberdoran, F., 2020. The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with an emphasis on heavy metals. Plant Signal. Behav., 15 (7), 1777372. https://doi.org/10.1080/15592324.2020.1777372
63. Horv«th, E., Szalai, G. & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. J. Plant Growth Regul., 26 (3), pp. 290-300. https://doi.org/10.1007/s00344-007-9017-4
64. Borsani, O., Valpuesta, V. & Botella, M.A., 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol., 126(3), pp. 1024-1030. https://doi.org/10.1104/pp.126.3.1024
65. Cunningham, S.D. & Berti, W.R. 1993. Remediation of contaminated soils with green plants: An overview. In Vitro Cell. Dev. Biol. - Plant, 29, pp. 207-212. https://doi.org/10.1007/BF02632036
66. Katoh, M., Hashimoto, K. & Sato, T. (2016). Lead and antimony removal from contaminated soil by phytoremediation combined with an immobilization material. Clean - Soil Air Water, 44 (12), pp. 1717-1724. https://doi.org/10.1002/clen.201500162
67. Yadav, K. K., Gupta, N., Kumar, A., Reece, L. M., Singh, N., Rezania, S. & Khan S.A. (2018). Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol. Eng., 120, pp. 274-298. https://doi.org/10.1016/j.ecoleng.2018.05.039
68. Malar, S. K. & Saradha, M. (2020). Strategies for phytoremediation of soil contaminated with lead using alternanthera sessilis. Int. J. Curr. Res. Biosci. Plant Biol., 7 (5), pp. 46-50. https://doi.org/10.20546/ijcrbp.2020.705.007
69. Tong, H. (2023). Phytoextraction of lead in contaminated soil - a collaboration between introductory analytical chemistry and campus farm. J. Chem. Educ., 100 (10), pp. 4013-4019. https://doi.org/10.1021/acs.jchemed.3c00382
70. Mei, X., Wang, Y., Li, Z., Larousse, M., Pѕrѕ, A., Rocha, M., Zhan., F., He, Y., Pu, L., PanabiAres., F. & Zu, Y. (2021). Root-associated microbiota drive phytoremediation strategies to lead of Sonchus asper (L.) hill as revealed by intercropping-induced modifications of the rhizosphere microbiome. Environ. Sci. Pollut. Res., 29 (16), pp. 23026-23040. https://doi.org/10.1007/s11356-021-17353-1
71. He, L., Han, X., Qiu, W., Xu, D., Wang, Y., Yu, M., Xianqi, H. & Zhuo, R. (2019). Identification and expression analysis of the gdsl esterase/lipase family genes, and the characterization of saglip8 in Sedum alfredii hance under cadmium stress. Peerj, 7, e6741. https://doi.org/10.7717/peerj.6741
72. MaYecka, A., Konkolewska, A., HaXє, A., BaraYkiewicz, D., Ciszewska, L., Ratajczak, E., Staszak, A.M., Kmita, H. & Jarmuszkiewicz, W. (2019). Insight into the phytoremediation capability of Brassica juncea (v. Malopolska): metal accumulation and antioxidant enzyme activity. Int. J. Mol. Sci., 20 (18), 4355. https://doi.org/10.3390/ijms20184355
73. Tamura, H., Honda, M., Sato, T. & Kamachi, H. (2005). Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench). J. Plant Res., 118 (5), pp. 355-359. https://doi.org/10.1007/s10265-005-0229-z
74. Anguilano, L., Onwukwe, U., Dekhli, A., Venditti, S., Aryani, D. & Reynolds, A. (2022). Hyperaccumulation of lead using Agrostis tenuis. Environmental Systems Research, 11 (1). https://doi.org/10.1186/s40068-022-00279-z
75. Mellem, J., Baijnath, H. & Odhav, B. (2012). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. Afr. J. Agric. Res., 7 (4), pp. 591-596. https://doi.org/10.5897/AJAR11.1486
76. Reeves, R. & Brooks, R. (1983). Hyperaccumulation of lead and zinc by two metallophytes from a mining area in central Europe. Environ. Pollut., 31 (4), pp. 277-285. https://doi.org/10.1016/0143-1471(83)90064-8
77. Cunningham, S.D. & Ow, D.W. (1996). Promises and prospects of phytoremediation. Plant Physiol., 110, pp. 715-719. https://doi.org/10.1104/pp.110.3.715
78. Sharma, N., Gardea-Torresdey, J., Parsons, J. & Sahi, S. (2004). Chemical speciation and cellular deposition of lead in Sesbania drummondii. Environ. Toxicol. Chem., 23 (9), pp. 2068-2073. https://doi.org/10.1897/03-540
79. S«nchez-Galv«n, G., Monroy, O., GЩmez, J. & OlguHn, E. (2008). Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water Air Soil Pollut., 194 (1-4), pp. 77-90. https://doi.org/10.1007/s11270-008-9700-5
80. S«nchez-Galv«n, G. & OlguHn, E.G. (2009). A holistic approach to phytofiltration of heavy metals: recent advances in rhizofiltration, constructed wetlands, lagoons, and bioadsorbentbased systems. In L.K. Wang, Y.T. Hung & N.K. Shammas (Eds.), Handbook of Advanced Industrial and Hazardous Wastes Treatment (pp. 389-407). Boca Raton: CRC Press. https://doi.org/10.1201/9781420072228
81. Kucharski, R., Sas-Nowosielska, A., MaYkowski, E., Japenga, J., Kuperberg, J., Pogrzeba, M. & Krzyza, J. (2005). The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil, 273, pp. 291-305. https://doi.org/10.1007/s11104-004-8068-6
82. Szarek-ukaszewska, G., & Grodzinska, K. (2007). Vegetation of a post-mining open pit (Zn/Pb ores): Three-year study of colonization. Pol. J. Ecol., 55 (2), pp. 261-282.
83. Chehregani, A. & Malayeri, B.E. (2007). Removal of heavy metals by native accumulator plants. Int. J. Agric. Biol., 9, pp. 462-465.