Fiziol. rast. genet. 2025, vol. 57, no. 1, 43-55, doi: https://doi.org/10.15407/frg2025.01.043

The influence of bacterial inoculants on grain maize productivity

Zadorozhnyi V.1, Chernelivska O.1, Sanin Ye.2

  1. Institute of Feed Research and Agriculture of Podillia, National Academy of Agrarian Sciences of Ukraine 16 Yunosty Ave., Vinnytsia, 21100, Ukraine
  2. Indigo Agriculture Ukraine 13 Hlybochytska St., building 1, office 1, Kyiv, 04050, Ukraine

The stimulating effect of bacterial inoculants increases the weight and length of the root system of plants, which leads to effective absorption of water and nutrients from the lower layers of soil and increases the yield. Biological fungicides based on bacteria provide protection against the main pathogens of seedlings and plants during the growing season of agricultural crops. The effect of bacterial inoculants Biotrinsik i30 (Bacillus simplex) and biological fungicide-growth promotor Biotrinsik X11 (Kosakonia cowanii SYM00028) on the growth and development of maize plants was investigated. It was shown that treatment of maize seeds with Biotrinsic X11 stimulates the growth and development of the root system compared to the control. The weight of the roots increases by 12—30 %. The plants treated with biostimulants were 15—23 cm higher than those on the control. Biotrinsic X11 seed treatment provided a significant grain yield increase compared to the control — by 0.37 t/ha. An increase in the grain maize productivity was observed under complex seed treatment with Maxim XL 1 L/t + Biotrinsik X11 0.36 kg/t + Biotrinsik i30 0.36 kg/t compared with Maxim XL only. The combination of Biotrinsik X11 treatment with Biotrinsik i30 provided the highest stimulating effect on maize plants. In this variant, the highest yield and a significant increase compared to the control was obtained — 0.43 t/ha. The obtained results give reasons to claim that the treatment of maize seeds with bacterial preparations has a stimulating effect on the regulation of growth and development of maize plants, reduces the negative impact of environmental stresses in ontogenesis and the risk of crop loss. Thus, bioinoculants and biological fungicides are becoming an integral element of modern technologies for growing maize.

Keywords: Zea mais L., bacterial inoculants, biological fungicides, Biotrinsik i30 PS, Biotrinsik X11 PS

Fiziol. rast. genet.
2025, vol. 57, no. 1, 43-55

Full text and supplemented materials

Free full text: PDF  

References

1. Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K. & Prasanna, B.M. (2022). Global maize production, consumption and trade: Trends and R&D implications. Food Secur., 14., pp. 1295-1319. https://doi.org/10.1007/s12571-022-01288-7

2. Rethinking Land in the Anthropocene: From Separation to Integration. (2020). Advisory Council on Global Change (WBGU), Berlin. Retrieved from: www.wbgu.de/en/publications/publication/landshift

3. Grote, U., Fasse, A., Nguyen, T. & Erenstein, O. (2021). Food Security and the Dynamics of Wheat and Maize Value Chains in Africa and Asia. Front. Sustain. Food Sys., 4, 617009. https://doi.org/10.3389/fsufs.2020.617009

4. Willett, W., Rockstrm, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J.A., De Vries, W., Majele Sibanda, L. & Murray, C.J.L. (2019). Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393, pp. 447-492. https://doi.org/10.1016/S0140-6736(18)31788-4

5. Kubitza, C., Krishna, V.V., Schulthess, U. & Jain, M. (2020). Estimating adoption and impacts of agricultural management practices in developing countries using satellite data. A scoping review. Agron. Sustain. Dev., 40.16, pp. 1-21. https://doi.org/10.1007/s13593-020-0610-2

6. Andorf, C., Beavis, W.D., Hufford, M., Smith, S., Suza, W.P., Wang, K., Woodhouse, M., Yu, J. & Lтbberstedt, T. (2019). Technological advances in maize breeding: past, present and future. Theor. Appl. Genet., 132, pp. 817-849. https://doi.org/10.1007/s00122-019-03306-3

7. Prasanna, B.M., Cairns, J.E., Zaidi, P.H., Beyene, Y., Makumbi, D., Gowda, M., Magorokosho, C., Zaman-Allah, M., Olsen, M., Das, A., Worku, M., Gethi, J., Vivek, B.S., Nair, S.K., Rashid, Z., Vinayan, M.T., Issa, A.B., San Vicente, F., Dhliwayo, T. & Zhang, X. (2021). Beat the stress: Breeding for climate resilience in maize for the tropical rainfed environments. Theor. Appl. Genet., 134. pp. 1729-1752. https://doi.org/10.1007/s00122-021-03773-7

8. Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Lv, Y. & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants, 8 (2), 4. https://doi.org/10.3390/plants8020034

9. Cherchel, V.Yu., Dziubetskyi, B.V., Kondratenko, P.V., Kyrpa, M.Ya., Hyrka, A.D. & Dudka, M.I. (2021). Maize program in Ukraine under climate change. Dnipro: SE IGC NAAS. 44 p. [in Ukrainian].

10. Rusan, V.M., Zhurakovska, L.A., Zhalilo, Ya.A., Vozhegova, R.A., Danchuk, O.V. & Granovska, L.M. (2024). Prospects for the development of the agricultural sector of Ukraine in the conditions of climate change. Kyiv. NISD. 2024. 47 p. [in Ukrainian]. https://doi.org/10.53679/NISS-analytrep.2024.09

11. State Statistics Service of Ukraine. (2024). September 25, 2024. Retrieved from: www.ukrstat.gov.ua

12. Baltazar, M., Correia, S., Guinan, K.J., Sujeeth, N., Braganca, R. & Goncalves, B. (2021). Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules, 11 (8). 1096. https://doi.org/10.3390/biom11081096

13. Naveed, M., Mitter, B., Yousaf, S. & Pastar, M. (2014). The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil. Soils., 50, pp. 249-262. https://doi.org/10.1007/s00374-013-0854-y

14. Mpanga, I.K., Nkebiwe, P.M., Kuhlmann, M., Cozzolino, V., Piccolo, A., Geistlinger, J., Berger, N., Ludewig, U. & Neumann, G. (2019). The form of N supply determines plant growth promotion by P-solubilizing microorganisms in maize. Microorganisms. 7 (2), 38. https://doi.org/10.3390/microorganisms7020038

15. Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A. & Brown, P.H. (2017). Biostimulants in plant science: A global perspective. Front. Plant Sci., 7, 2049. https://doi.org/10.3389/fpls.2016.02049

16. Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic., 196, pp. 3-14. https://doi.org/10.1016/j.scienta.2015.09.021

17. Patani, A., Patel, M., Islam, S. & Yadav, V.K. (2024). Recent advances in Bacillus-mediated plant growth enhancement: a paradigm shift in redefining crop resilience. World J Microbiol Biotechnol., 40, 77. https://doi.org/10.1007/s11274-024-03903-5

18. Gazoulis, I., Kanatas, P., Antonopoulos, N., Kokkini, M., Tsekoura, A., Demirtzoglou, T. & Travlos, I. (2023). The integrated effects of biostimulant application, mechanical weed control, and herbicide application on weed growth and maize (Zea mays L.) yield. Agronomy, 13,(10), 2614. https://doi.org/10.3390/agronomy13102614

19. Lephatsi, M., Nephali, L., Meyer, V., Piater, L.A., Buthelezi, N., Dubery, I.A., Opperman, H., Brand, M., Huyser, J. & Tugizimana, F. (2022). Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming and drought stress tolerance in maize plants. Sci Rep., 12, 10450. https://doi.org/10.1038/s41598-022-14570-7

20. Methods of experimental mycology. V.I. Bilay (ed.). (1982). K.: Naukova Dumka [in Rusian].

21. Sigarova, S.S., Sekun, M.P., Ivashchenko, O.O. Tribel, S.O. (ed.). (2001). Methodology for testing and drying of pesticides. Kiev: Svit [in Ukrainian].

22. Nascimento, R.D, Cavalcanti, M.I.P, Correia, A.D, Escobar, I.E.C, de Freitas, D.S., Nobrega, R.S.A. & Fernabdes Junior, P.I. (2023). Maize-associated bacteria from the Brazilian semiarid region boost plant growth and grain yield. Symbiosis, 2021. 83, pp. 347-359. https://doi.org/10.1007/s13199-021-00755-7

23. Efthimiadou, A., Katsenios, N., Chanioti, S., Giannoglou, M., Djordjevic, N. & Katsaros, G. (2020). Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Sci. Rep., 10, 21060. https://doi.org/10.1038/s41598-020-78034-6

24. Katsenios, N., Andreou, V., Sparangis, P., Djordjevic, N., Giannoglou, M., Chanioti, S., Kasimatis, C.N., Kakabouki, I., Leonidakis, D., Danalatos, N., Katsaros, G. & Efthimiadou, A. (2022). Assessment of plant growth promoting bacteria strains on growth, yield and quality of sweet corn. Sci Rep., 12, 11598. https://doi.org/10.1038/s41598-022-16044-2

25. Schwartau, V., Mykhalska, L. & Makoveychuk, T. (2018). Microelement content in winter wheat plants under the action of retardants. Fiziol. rast. genet., 48, No. 6, pp. 474-483 [in Ukrainian].

26. Mykhalska, L.M., Makoveychuk, T.I., Tretiakov, V.O. & Schwartau, V.V. (2023). The influence of sulfate ammonium on the retardant activity of trinexapac-ethyl on wheat. Fiziol. rast. genet., 55, No. 4, pp. 355-367 [in Ukrainian]. https://doi.org/10.15407/frg2023.04.355

27. Kasim, W.A, Osman, M.E, Omar, M.N, El-Daim, A., Islam, A., Bejai, S. & Meijer, J. (2013). Control of drought stress in wheat using plant-growth-promoting bacteria. Plant Growth Regul., 32 (1), pp. 122-130. https://doi.org/10.1007/s00344-012-9283-7

28. Morgun, V.V., Schwartau, V.V. & Kiriziy, D.A. (2010). Physiological bases of formation of high productivity of grain cereals. Fyzyolohyia i byokhymyia kult. rastenyi, 42, No. 5, pp. 371-392 [in Russian].

29. Abendroth, L.J., Elmore, R.W., Boyer, M.J. & Marlay, S.K. (2011). Corn growth and development. PMR.1009. Iowa State University Extension Service, Ames, Iowa, 49 p.