Fiziol. rast. genet. 2025, vol. 57, no. 1, 18-26, doi: https://doi.org/10.15407/frg2025.01.018

Role of heat shock proteins in drought tolerance mechanism in chickpea

Slishchuk H.I., Volkova N.E., Vozhehova R.A., Marchenko T.Y.

  • Institute of Climate-Smart Agriculture, National Academy of Agrarian Sciences of Ukraine 24 Mayatska doroga St., Hlibodarske, Odesa region, 67667, Ukraine

Chickpea is highly drought-resistant and can withstand high temperatures and prolonged droughts, making it suitable for climate conditions in Ukraine, so increasing of chickpea drought tolerance is highly important. Heat shock proteins (HSP), especially small HSP (sHSP), are diverse and have evolved significantly, indicating their ancient origins and critical roles in plant stress responses. These proteins have undergone extensive gene duplication and divergence, leading to various functions and stress responses across different plant species. sHSP have conserved a-crystallin domain, and typically form large oligomeric complexes essential for their chaperone activity. They prevent protein aggregation and assist in protein refolding under stress. sHSPs are found in various cellular compartments, indicating specialized roles in different cellular environments. HSP regulation is controlled by heat shock factors (HSF), which activate in response to stress and bind to heat shock elements in HSP promoters. HSF are regulated at multiple levels, ensuring balanced stress adaptation and recovery. Identified HSF in chickpea are significantly upregulated during heat stress, indicating their critical role in stress tolerance. HSP, including sHSP like CaHSP18.5 and CaHSP22.7, are upregulated under drought stress in chickpea, contributing to improved membrane stability and antioxidative protection. Proteomic and transcriptomic analyses have identified key HSP that are differentially expressed in drought-tolerant chickpea genotypes. Cross-priming with mild drought stress can enhance the expression of HSP, providing potential strategy for improving both drought and heat tolerance in chickpea. MicroRNAs (miRNA) play crucial roles in regulating HSPs and other stress-responsive genes. miR408 and miR398 are significant in enhancing drought and heat tolerance by targeting specific genes and modulating HSP expression. The differential expression of various miRNA under drought conditions highlights their importance in multiple regulatory pathways.

Keywords: Cicer arietinum, drought tolerance, variety, agricultural productivity, changing climate conditions, genes, small heat shock proteins

Fiziol. rast. genet.
2025, vol. 57, no. 1, 18-26

Full text and supplemented materials

Free full text: PDF  

References

1. Dadon, S., Abbo, S. & Reifen, R. (2017). Leveraging traditional crops for better nutrition and health - The case of chickpea. Trends Food Sci. Technol., No. 64, pp. 39-47. https://doi.org/10.1016/j.tifs.2017.04.002

2. Jukanti, A., Gaur, P., Gowda, C. & Chibbar, R. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British J. Nutr., 108 (1), pp. 11-26. https://doi.org/10.1017/S0007114512000797

3. Kaur, R. & Prasad, K. (2021). Technological, processing and nutritional aspects of chickpea (Cicer arietinum) - A review. Trends Food Sci. Technol., 109, pp. 448-463. https://doi.org/10.1016/j.tifs.2021.01.044

4. Madurapperumage, A., Tang, L., Thavarajah, P., Bridges, W., Shipe, E., Vandemark, G. & Thavarajah, D. (2021). Chickpea (Cicer arietinum L.) as a source of essential fatty acids - A biofortification approach. Front. Plant Sci., 12, p. 734980. https://doi.org/10.3389/fpls.2021.734980

5. Merga, B. & Haji, J. (2019). Economic importance of chickpea: Production, value, and world trade. Cogent Food Agricult., 5 (1), p. 1615718. https://doi.org/10.1080/23311932.2019.1615718

6. Koul, B., Sharma, K., Sehgal, V., Yadav, D., Mishra, M. & Bharadwaj, C. (2022). Chickpea (Cicer arietinum L.) Biology and biotechnology: From domestication to biofortification and biopharming. Plants, 11 (21), p. 2926. https://doi.org/10.3390/plants11212926

7. Rani, A., Devi, P., Jha, U., Sharma, K., Siddique, K. & Nayyar, H. (2020). Developing Climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Front. Plant Sci., 10, p. 1759. https://doi.org/10.3389/fpls.2019.01759

8. Naumann, G., Cammalleri, C., Mentaschi, L. & Feyen, L. (2021). Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Chang., 11, pp. 485-491. https://doi.org/10.1038/s41558-021-01044-3

9. Mazur, V., Didur, I., Pantsyreva, H. & Mordvaniuk, M. (2022). Energy efficiency of technological methods of chickpea growing in conditions of climate change. Agricult. Forestry, 225), pp. 5-13. https://doi.org/10.37128/2707-5826-2022-2-1

10. Kregel, K. (2002). Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol., 92 (5), pp. 2177-2186. https://doi.org/10.1152/japplphysiol.01267.2001

11. Park, C. & Seo, Y. (2015). Heat shock proteins: A review of the molecular chaperones for plant immunity. Plant Pathol. J., 31 (4), pp. 323-333. https://doi.org/10.5423/PPJ.RW.08.2015.0150

12. Waters, E. (1995). The molecular evolution of the small heat-shock proteins in plants. Genetics, 141 (2), pp. 785-795. https://doi.org/10.1093/genetics/141.2.785

13. Waters, E. & Vierling, E. (1999). The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Mol. Biol. Evol., 16 (1), pp. 127-139. https://doi.org/10.1093/oxfordjournals.molbev.a026033

14. Waters, E., Aevermann, B. & Sanders-Reed, Z. (2008). Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chaperones, 13 (2), pp. 127-142. https://doi.org/10.1007/s12192-008-0023-7

15. Waters, E. & Vierling, E. (2020). Plant small heat shock proteins - evolutionary and functional diversity. New Phytol., 227 (1), pp. 24-37. https://doi.org/10.1111/nph.16536

16. Jong, W., Leunissen, J. & Voorter, C. (1993). Evolution of the alpha-crystallin/small heat-shock protein family. Mol. Biol. Evol., 10 (1), pp. 103-126. https://doi.org/ 10.1093/OXFORDJOURNALS.MOLBEV.A039992

17. Li, W., Chen, Y., Ye, M., Wang, D. & Chen, Q. (2020). Evolutionary history of the heat shock protein 90 (Hsp90) family of 43 plants and characterization of Hsp90s in Solanum tuberosum. Mol. Biol. Rep., 47 (9), pp. 6679-6691. https://doi.org/10.1007/s11033-020-05722-x

18. Waters, E. & Vierling, E. (1999). Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. PNAS, 96 (25), pp. 14394-14399. https://doi.org/10.1073/pnas.96.25.14394

19. Waters, E. (2013). The evolution, function, structure, and expression of the plant sHSPs. J. Exp. Bot., 64 (2), pp. 391-403. https://doi.org/10.1093/jxb/ers355

20. Ke, Y., Xu, M., Hwarari, D., Chen, J. & Yang, L. (2022). Genomic survey of heat shock proteins in Liriodendron chinense provides insight into evolution, characterization, and functional diversities. Int. J. Mol. Sci., 23 (23), p. 150151. https://doi.org/10.3390/ijms232315051

21. Waters, E., Lee, G. & Vierling, E. (1996). Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot., 47 (3), pp. 325-338. https://doi.org/10.1093/jxb/47.3.325

22. Kim, K., Kim, R. & Kim, S. (1998). Crystal structure of a small heat-shock protein. Nature, 394, pp. 595-599. https://doi.org/10.1038/29106

23. Haq, S., Khan, A., Ali, M., Khattak, A., Gai, W., Zhang, H., Wei, A., & Gong, Z. (2019). Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. Int. J. Mol. Sci., 20 (21), p. 5321. https://doi.org/10.3390/ijms20215321

24. Basha, E., Jones, C., Wysocki, V. & Vierling, E. (2010). Mechanistic Differences between two conserved classes of small heat shock proteins found in the plant cytosol. J. Biol. Chem., 285 (15), pp. 11489-11497. https://doi.org/10.1074/jbc.M109.074088

25. Bernfur, K., Rutsdottir, G. & Emanuelsson, C. (2017). The chloroplast localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat stressed plants. Protein Sci., 26 (9), pp. 1773-1784. https://doi.org/10.1002/pro.3213

26. Hsu, S., Lai, H. & Jinn, T. (2010). Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiol., 153 (2), pp. 773-784. https://doi.org/10.1104/pp.109.151225

27. Andr«si, N., PettkЩ-Szandtner, A. & Szabados, L. (2020). Diversity of plant heat shock factors: Regulation, interactions and functions. J. Exp. Bot., 72 (5), pp. 1558-1575. https://doi.org/10.1093/jxb/eraa576

28. Bourgine, B. & Guihur, A. (2021). Heat shock signaling in land plants: from plasma membrane sensing to the transcription of small heat shock proteins. Front Plant Sci., 12, p. 710801. https://doi.org/10.3389/fpls.2021.710801

29. Kim, T., Samraj, S., Jimѕnez, J., GЩmez, C., Liu, T. & Begcy, K. (2021). Genome-wide identification of heat shock factors and heat shock proteins in response to UV and high intensity light stress in lettuce. BMC Plant Biol., 21 (1), p. 185. https://doi.org/10.1186/s12870-021-02959-x

30. Chidambaranathan, P., Jagannadham, P.T.K., Satheesh, V., Kohli, D., Basavarajappa, S. H., Chellapilla, B. & Srinivasan, R. (2018). Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage. J. Plant Res., 131 (3), pp. 525-542. https://doi.org/10.1007/s10265-017-0948-y

31. Kumar, M., Chauhan, A., Yusuf, M., Sanyal, I. & Chauhan, P. (2019). Transcriptome sequencing of chickpea (Cicer arietinum L.) genotypes for identification of drought-responsive genes under drought stress condition. Plant Mol. Biol. Rep., 37, pp. 186-203. https://doi.org/10.1007/s11105-019-01147-4

32. Saini, R., Adhikary, A., Nayyar, H. & Kumar, S. (2019). Cross-priming accentuates key biochemical and molecular indicators of defense and improves cold tolerance in chickpea (Cicer arietinum L.). Acta Physiol. Plant, 41, p. 181. https://doi.org/10.1007/s11738-019-2971-1

33. Yadav, R., Juneja, S. & Kumar, S. (2021). Cross priming with drought improves heat-tolerance in chickpea (Cicer arietinum L.) by stimulating small heat shock proteins and antioxidative defense. Environment. Sustainab., 4, pp. 171-182. https://doi.org/10.1007/s42398-020-00156-4

34. Feng, X., Zhang, H., Ali, M., Gai, W., Cheng, G., Yu, Q., Yang, S., Li, X. & Gong, Z. (2019). A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). Plant Physiol. Biochem., 142, pp. 151-162. https://doi.org/10.1016/j.plaphy.2019.07.001

35. Ma, H., Wang, C., Yang, B., Cheng, H., Wang, Z., Mijiti, A., Ren, C., Qu, G., Zhang, H. & Ma, L. (2015). CarHSFB2, a Class B Heat Shock Transcription Factor, is involved in different developmental processes and various stress responses in chickpea (Cicer arietinum L.). Plant Mol. Biol. Rep., 34, pp. 1-14. https://doi.org/10.1007/s11105-015-0892-8

36. Wang, N., Liu, W., Yu, L., Guo, Z., Chen, Z., Jiang, S., Xu, H., Fang, H., Wang, Y., Zhang, Z. & Chen, X. (2020). Heat Shock Factor A8a modulates flavonoid synthesis and drought tolerance. Plant Physiol., 184 (3), pp. 1273-1290. https://doi.org/10.1104/pp.20.01106

37. Parankusam, S., Bhatnagar-Mathur, P. & Sharma, K. (2017). Heat responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea. J. Env. Exp. Bot., 141, pp. 132-144. https://doi.org/10.1016/j.envexpbot.2017.07.007

38. Gupta, S., Mishra, S., Misra, S., Pandey, V., Agrawal, L., Nautiyal, C. & Chauhan, P. (2020). Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. Plant Physiol. Biochem., 151, pp. 88-102. https://doi.org/10.1016/j.plaphy.2020.03.005

39. Makonya, G., Ogola, J., Gabier, H., Rafudeen, M., Muasya, A., Crespo, O., Maseko, S., Valentine, A., Ottosen, C., Rosenqvist, E. & Chimphango, S. (2021). Proteome changes and associated physiological roles in chickpea (Cicer arietinum) tolerance to heat stress under field conditions. Func. Plant Biol., 49 (1), pp. 13-24. https://doi.org/10.1071/FP21148

40. Juneja, S., Saini, R., Adhikary, A., Yadav, R., Khan, S.A., Nayyar, H. & Kumar, S. (2023). Drought priming evokes essential regulation of Hsp gene families, Hsfs and their related miRNAs and induces heat stress tolerance in chickpea. Plant Stress, 10, 100189. https://doi.org/10.1016/j.stress.2023.100189

41. Hajyzadeh, M., Turktas, M., Khawar, K. & Unver, T. (2015). miR408 overexpression causes increased drought tolerance in chickpea. Gene, 555 (2), pp. 186-193. https://doi.org/10.1016/j.gene.2014.11.002

42. Mishra, S., Sahu, G. & Shaw, B. (2021). Integrative small RNA and transcriptome analysis provides insight into key role of miR408 towards drought tolerance response in cowpea. Plant Cell Rep., 41 (1), pp. 75-94. https://doi.org/10.1007/s00299-021-02783-5

43. Guan, Q., Lu, X., Zeng, H., Zhang, Y. & Zhu, J. (2013). Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J., 74 (5), pp. 840-851. https://doi.org/10.1111/tpj.12169

44. Lin, J., Kuo, C., Yang, I., Tsai, W., Shen, Y., Lin, C., Liang, Y., Li, Y., Kuo, Y., King, Y., Lai, H. & Jeng, S. (2018). MicroRNA160 Modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front. Plant Sci., 9, p. 68. https://doi.org/10.3389/fpls.2018.00068

45. Inal, B., Mirzapour, M., Tufekci, E., Rustemoglu, M., Kaba, A., Albalawi, M., Alalawy, A., Sakran, M., Alqurashi, M. & Ditta, A. (2023). Drought-Induced miRNA expression correlated with heavy metal, phenolic acid, and protein and nitrogen levels in five chickpea genotypes. ACS Omega, 8 (39), pp. 35746-35754. https://doi.org/10.1021/acsomega.3c03003