The indices of germination energy, laboratory seed germination, and morphometric parameters of red clover (Trifolium pratense L.) seedlings of the cultivars Tina and Anitra under mono-inoculation and inoculation with binary compositions based on symbiotic and associative microorganisms were investigated. It was revealed a stronger growth-stimulating effect of microbial compositions Rhizobium leguminosarum bv. trifolii 348a + Pseudomonas fluorescens 33, R. leguminosarum bv. trifolii 348a + P. fluorescens 267, and R. leguminosarum bv. trifolii 348a + Rhizobium galegae 0702 on the studied parameters in both clover cultivars compared to the separately applied inoculants based on P. fluorescens 267, P. fluorescens 33, or R. leguminosarum bv. trifolii 348a. In addition, an increase in the germination energy of T. pratense cv. Tina seeds by 14.8 % and their laboratory germination by 6.1 % was observed under inoculation with the complex R. leguminosarum bv. trifolii 348a + Azotobacter chroococcum 79, compared to the absolute control. Meanwhile, the maximum increases in these parameters, as well as in the length and mass of seedlings of cv. Anitra — by 21.8 % and 13.6 %, respectively — were recorded under seed bacterization with clover rhizobia jointly with R. galegae 0702. Among the mono-inoculants used in the study, seed treatment with P. fluorescens 267 most effectively stimulated seed germination and improved the morphometric parameters of cv. Anitra seedlings compared to the control. These results can be used for the development of elements of cultivation technology for red clover under inoculation with biopreparations based on symbiotic and associative microorganisms.
Keywords: Trifolium pratense L., red clover, rhizobia, Rhizobium leguminosarum bv. trifolii, Azotobacter chroococcum, Pseudomonas fluorescens, seedlings, germination rate, germination energy
Full text and supplemented materials
Free full text: PDFReferences
1. Roy, S., Liu, W., Nandety, R.S., Crook, A., Mysore, K.S., Pislariu, C.I., Frugoli, J., Dickstein, R. & Udvardi, M.K. (2020). Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell, 32(1), pp. 15-41. https://doi.org/10.1105/tpc.19.00279
2. Peix, A., Ramirez-Bahena, M.H., Velazquez, E. & Bedmar, E.J. (2015). Bacterial associations with legumes. Crit. Rev. Plant Sci., 34, pp. 17-42. https://doi.org/10.1080/07352689.2014.897899
3. Lupwayi, N.Z., Kennedy, A.C. & Chirwa, R.M. (2011). Grain legume impacts on soil biological processes in sub-Saharan Africa. African J. Plant Sci., 5(1), pp. 1-7.
4. Sawicka, B., Krochmal-Marczak, B., Sawicki, J., Skiba, D., PszczЩYkowski, P., Barbaн, P., Vambol, V., Messaoudi, M. & Farhan, A. (2023). White clover (Trifolium repens L.) cultivation as a means of soil regeneration and pursuit of a sustainable food system model. Land, 12(4), 838. https://doi.org/10.3390/land12040838
5. Gouda, S., Kerry, R.G., Das, G., Paramithiotis, S., Shin, H.S. & Patra, J.K. (2017). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res., 206, pp. 131-140. https://doi.org/10.1016/j.micres.2017.08.016
6. Masson-Boivin, C., Giraud, E., Perret, X. & Batut, J. (2009), Establishing nitrogen-fixing symbiosis with legumes: how many Rhizobium recipes. Trends Microbiol., 17(10), 458-466. https://doi.org/10.1016/j.tim.2009.07.004
7. Andrews, M. & Andrews, M. (2016). Specificity in legume-rhizobia symbioses. Int. J. . Mol. Sci., 18(4), 705. https://doi.org/10.3390/ijms18040705
8. Antoniv, S.F., Zapruta, O.A., Kolesnik, S.I., Fostolovych, S.I. & Konovalchuk, V.V. (2020). Presowing treatment of seeds of pasture leguminous grasses with bacteriological and biological preparations as an important factor of improving their sowing properties. Feeds and Feed Product., 90, pp. 21-29 [in Ukrainian]. https://doi.org/10.31073/kormovyrobnytstvo202090-02
9. Kumar, V.K., Reddy, M.S., Kloepper, J.W., Lawrence, K.S., Zhou, X.G., Groth, D.E., Zhang, S., Sudhakara Rao, R., Wang, Q., Raju, M.R.B, Krishnam, R., Dilantha Fernando, W.G., Sudini, H., Du, B. & Miller, M.E. (2011). Commercial potential of microbial inoculants for sheath blight management and yield enhancement of rice. In: Maheshwari, D.K. (ed). Bacteria in Agrobiology: Crop Ecosystems (pp. 237-264). Berlin: Springer. https://doi.org/10.1007/978-3-642-18357-7_9
10. Ahemad, M. & Khan, M.S. (2011). Functional aspects of plant growth promoting rhizobacteria: Recent advancements. Int. Microbiol., 1: pp. 39-54. https://doi.org/10.5567/IMICRO-IK.2011.39.54
11. Kalam, S., Basu, A. & Podile, A.R. (2020). Functional and molecular characterization of PGP Bacillus isolates from tomato rhizosphere. Heliyon, 6, e04734. https://doi.org/10.1016/j.heliyon.2020.e04734
12. Parray, J.A., Jan, S., Kamilo, A.N., Quadri, R.A., Egamberdieva, D. & Ahmad, P. (2016). Current perspective on PGPR. J.. Plant Growth Regul., 35: pp. 877-902. https://doi.org/10.1007/s00344-016-9583-4
13. Gabre, V.V., Venancio, W.S., Moraes, B.A., Furmam, F., de G., Galv±o, C.W., Goncalves, D.R.P. & Etto, R.M. (2020). Multiple effect of different plant growth promoting microorganisms on beans (Phaseolus vulgaris L.) Crop Brazil. Arch. Biol. Technol., 63, e20190493. https://doi.org/10.1590/1678-4324-solo-2020190493
14. Alemneh, A.A., Zhou, Y., Ryder, M.H. & Denton, M.D. (2020). Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J. Appl/ Microbiol., 129(5), pp. 1133-1156. https://doi.org/10.1111/jam.14754
15. Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z. & Lin, W. (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PloS One, 14(5), e0217018. https://doi.org/10.1371/journal.pone.0217018
16. Ejaz, S., Batool, S., Anjum, M.A., Naz, S., Qayyum, M.F., Naqqash, T., Shah, K.H. & Ali, S. (2020). Effects of inoculation of root-associative Azospirillum and Agrobacterium strains on growth, yield and quality of pea (Pisum sativum L.) grown under different nitrogen and phosphorus regimes. Scientia Horticult., 270, 109401. https://doi.org/10.1016/j.scienta.2020.109401
17. Kemka, U.N., Orji, J.C., Nlemolisa, O.R., Gaius-Mbalisi, V.K., Nwokorie, R.C. & Ndu, F.C. (2022). Effect of co-inoculation of bacterial cultures of plant growth promoting rhizobacteria on white beans (Phaseolus vulgaris) seedlings development. J. Res. in Environ. and Earth Sci., 8(3), pp. 46-52.
18. Korir, H., Mungai, N.W., Thuita, M., Hamba, Y. & Masso, C. (2017). Co-inoculation effect of Rhizobia and plant growth promoting Rhizobacteria on common bean growth in a low phosphorus soil. Front. Plant Sci., 7, pp. 8-141. https://doi.org/10.3389/fpls.2017.00141
19. Atieno, M., Herrmann, L., Okalebo, R. & Lesueur, D. (2012). Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World J. Microbiol Biotechnol., 28, pp. 2541-2550. https://doi.org/10.1007/s11274-012-1062-x
20. Bulegon, L.G., Guimar±es, V.F., Klein, J., Batisttus, A.G., Inagaki, A.M., Offmann, L.C. & Souza, A.K.P. (2017). Enzymatic activity, gas exchange and production of soybean co-inoculated with Bradyrhizobium japonicum and Azospirillum brasilense. Austral. J. Crop Sci., 11, 888-896. https://doi.org/10.21475/ajcs.17.11.07.pne575
21. Ferri, G.C., Braccini, A.L., Anghinoni, F.B.G. & Pereira, L.C. (2017). Effects of associated co-inoculation of Bradyrhizobium japonicum with Azosprillum brasilense on soybean yield and growth. Afric. J. Agricult. Res., 12, pp. 6-11. https://doi.org/10.5897/AJAR2016.11711
22. Morales-GarcHa, Y.E., Baez, A., Quintero-Hern«ndez, V., Molina-Romero, D., Rivera-Urbalejo, A.P., Pazos-Rojas, L.A. & MuФoz-Rojas, J. (2019). Bacterial mixtures, the future generation of inoculants for sustainable crop production. In: Maheshwari, D., Dheeman, S. (eds). Field Crops: Sustainable Management by PGPR. Sustainable Development and Biodiversity, vol 23 (pp. 11-44). Springer, Cham. https://doi.org/10.1007/978-3-030-30926-8_2
23. Harris, C., & Ratnieks, F. (2022). Clover in agriculture: Combined benefits for bees, environment, and farmer. J. Insect Conserv., 26, pp. 339-357. https://doi.org/10.1007/s10841-021-00358-z
24. State Register of Plant Varieties Suitable for Dissemination in Ukraine in 2021 (2021). Kyiv, 531 p. Retrieved from https://sops.gov.ua/reestr-sortiv-roslin
25. DSTU 4138-2002. Seeds of agricultural crops. Methods for determining quality. Kyiv: Derzhspozhyvstandart Ukrainy, 2003 [in Ukrainian].
26. Kavunets, V.P. & Malasai, V.M. (2006). Quality and yield properties of seeds. Seed Production, 1, pp. 19-21 [in Ukrainian].
27. Levytska, L., Baistruk-Hlodan, L., Stasiv, O., Bilovus, H., & Khomiak, M. (2024). Determining the germinative qualities of red clover seed samples with varying biological status. Sci. Horizons, 27(12), pp. 38-46. https://doi.org/10.48077/scihor12.2024.38
28. Chu, L., Gao, Y., Chen, L., Mc Cullough, P., Jespersen, D., Sapkota, S., Bagavathiannan, M. & Yu, J. (2022). Impact of environmental factors on seed germination and seedling emergence of white clover (Trifolium repens L.). Agronomy, 12(1), 190. https://doi.org/10.3390/agronomy12010190
29. Lina, A.Q. & Escobar-Gutiѕrrez, A.J. (2022). Unexpected intraspecific variability of perennial ryegrass (Lolium perenne L.) in response to constant temperature during germination and initial heterotrophic growth. Front. Plant Sci., 13, 856099. https://doi.org/10.3389/fpls.2022.856099
30. Oleksiak, V., Stasiv, O., Baistruk-Hlodan, L. & Bilovus, H. (2023). Optimization of temperature modes for seed germination of perennial reegrass (Lolium perenne L.). Foothill and Mountain Agricult. Stockbreed., 74(1), 95-109 [in Ukrainian]. https://doi.org/10.32636/01308521.2023-(74)-1-7
31. Yu, J., Sharpe, S.M. & Boyd, N.S. (2020). Germination and emergence of common beggar's-tick (Bidens alba) seeds at two different stages of afterripening as affected by environmental factors. Weed Sci., 68(5), 503509. https://doi.org/10.1017/wsc.2020.45
32. Szczerba, A., PYaьek, A., Pastuszak, J., Kopeє, P., Horny«k, M. & Dubert, F. (2021). Effect of low temperature on germination, growth, and seed yield of four soybean (Glycine max L.) cultivars. Agronomy, 11(4), 800. https://doi.org/10.3390/agronomy11040800
33. Vivanco, P., Oliveira, J.A. & MartHn, I. (2021). Optimal germination conditions for monitoring seed viability in wild populations of fescues. Spanish J. Agricult. Res., 19(3), e0804. https://doi.org/10.5424/sjar/2021193-18025
34. Herman, G., Gantner, R., Guberac, V., ¦alac, H. & Bukviє, G. (2022). Temperature and water solution pH effects on crimson clover (Trifolium incarnatum L.) imbibition and seedling traits. J. Central Europ. Agricult., 23(4), 749-756. https://doi.org/10.5513/JCEA01/23.4.3640