Salinity is a growing problem causing huge crop losses in many regions of the world, especially in arid and semi-arid regions. The use of salt-tolerant crops, which have the ability to accumulate salt, can be an effective way of introducing saline soils into production. The salt-tolerant Tetragonia tetragonoides, commonly known as New Zealand spinach, is an annual plant belonging to the Aizoaceae family. Unlike most leafy vegetables, T. tetragonioides is tolerant to drought and high temperatures. When grown on saline soils, it has been shown to absorb large amounts of salt, producing a significant amount of dry matter. This species can be easily cultivated in different climatic conditions, can produce several harvests throughout the year (summer and winter), and has a high content of minerals and biologically active substances. In addition to its value as a leafy vegetable for human consumption, this species can be used as animal feed. The advantage of the species is the resistance to diseases and specific pests. T. tetragonioides provides protection against soil erosion due to its excellent soil adhesion. At the same time, its cultivation can make it possible to use more accessible brackish and seawater for sustainable food production in environments where traditional crops are not effective. In this case, the cultivation of these plants can be provided with macro- and micronutrients that are important components of these water sources.
Keywords: Tetragonia tetragonoides, soil salinity, Aizoaceae, facultative C3-CAM-photosynthesis, phytodesalinisation
Full text and supplemented materials
Free full text: PDFReferences
1. Wicke, B., Smeets, E., Dornburg, V., Vashev, B., Gaiser, T., Turkenburg, W. & Faaij, A. (2011). The global technical and economic potential of bioenergy from salt-affected soils. Energy & Env. Sci., 4(8), pp. 2669-2681. https://doi.org/10.1039/C1EE01029H
2. Baliuk, S., Medvedev, V., Miroshnichenko, M., Skrylnik, Ye., Timchenko, D., Fatieev, A., Khristenko, A. & Tsapko, Yu. (2012). Environmetal state of soil in Ukraine. Ukr. geogr. z., 2, pp. 38-42.
3. Jesus, J.M., Danko, A.S., Fiuza, A. & Borges, M.T. (2015). Phytoremediation of salt-afeted soils: a review of processes, applicability, and the impact of climate change. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-015-4205-4
4. Mukhopadhyay, R., Sarkar, B., Jat, H.S., Sharma, P.C. & Bolan, N.S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Env. Managem., 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736
5. Flowers, T.J., Munns, R. & Colmer, T.D. (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot., 115(3), pp. 419-431. https://doi.org/10.1093/aob/mcu217
6. Wang, N., Zhao, Z., Zhang, X., Liu, S., Zhang, K. & Hu, M. (2023). Plant growth, salt removal capacity, and forage nutritive value of the annual euhalophyte Suaeda salsa irrigated with saline water. Front. Plant Sci., 13, 1040520. https://doi.org/10.3389/fpls.2022.1040520
7. Ventura, Y., Eshel, A., Pasternak, D. & Sagi, M. (2015). The development of halophyte-based agriculture: past and present. Ann. Bot., 115, pp. 529-540. https://doi.org/10.1093/aob/mcu173
8. Hessini, K., Jeddi, K., Shaer, H.M.El., Smaoui, A., Salem, H.B. & Siddique, K.H.M. (2020). Potential of herbaceous vegetation as animal feed in semi-arid Mediterranean saline environments: The case for Tunisia. Agronomy J., 112, pp. 2445-2455. https://doi.org/10.1002/agj2.20196
9. Atzori, G., Nissim, W., Macchiavelli, T., Vita, F., Azzarello, E., Pandolfi, C., Masi, E. & Mancuso, S. (2020). Tetragonia tetragonioides (Pallas) Kuntz. as promising salt-tolerant crop in a saline agricultural context. Agr. Wat. Manag., 240, 106261. https://doi.org/10.1016/j.agwat.2020.106261
10. Alandia, G., Rodriguez, J.P., Jacobsen, S.E., Bazile, D. & Condori, B. (2020). Global expansion of quinoa and challenges for the Andean region. Global Food Sec., 26, 100429. https://doi.org/10.1016/j.gfs.2020.100429
11. Bekmirzaev, G., Beltrao, J., Isaev, S., Usmanov, M. & Tadjiev, S. (2023). Use of halophyte plants on saline soils and evaluation of salt removal efficiency. Web of Conf., 389. https://doi.org/10.1051/e3sconf/202338903043
12. Yousif, B.S., Nguyen, N.T., Fukuda, Y., Hakata, H., Okamoto, Yu, Masaoka, Y. & Saneoka, H. (2010). Effect of salinity in growth, mineral composition, photosynthesis and water relations of two vegetable crops; New Zealand spinach (Tetragonia tetragonioides) and water spinach (Ipomoea aquatica). Int. J. Agr. Bio., 12. pp. 211-216.
13. Bekmirzaev, G., Ouddane, B., Beltrao, J. & Fujii, Y. (2020). The impact of salt concentration on the mineral nutrition of Tetragonia tetragonioides. Agriculture, 10(6), 238. https://doi.org/10.3390/agriculture10060238
14. Jaworska, G. & Kmiecik, W. (1999). Content of selected mineral compounds, nitrates III and V, and oxalates in spinach (Spinacia oleracea L.) and New Zealand spinach (Tetragonia expansa Murr.) from spring and autumn growing seasons. Elect. J. Pol. Agr. Univ. Ser. Food Sci. Technol., 2(2).
15. Jaworska, G. & Kmiecik, W. (2000). Comparison of the nutritive value of frozen spinach and New Zealand spinach. Pol. J. Food Nutrit. Sci., 50 (4), pp. 79-84.
16. Kmiecik, W. & Jaworska, G. (1999). Effect of growing methods of New Zealand spinach on its yield and pattern of harvests. Folia Horticult., 11(1), pp. 75-85.
17. Jaworska, G. (2005). Content of nitrates, nitrites, and oxalates in New Zealand spinach. Food Chem., 89(2), pp. 235-242. https://doi.org/10.1016/j.foodchem.2004.02.030
18. Pyun, B., Yang, H., Sohn, E., Yu, S.Y., Lee, D., Jung, D., Ko, B. & Lee, H. (2018). Tetragonia tetragonioides (Pall.) Kuntze regulate androgen production in a letrozole-induced polycystic ovary syndrome model. Mol., 23(5), pp. 1-14. https://doi.org/10.3390/molecules23051173
19. Kim, D.S., Ko, B.S., Ryuk, J.A. & Park, S. (2020). Tetragonia tetragonioides protected against memory dysfunction by elevating hippocampal amyloid-b deposition through potentiating insulin signaling and altering gut microbiome composition. Int. J. Mol. Sci., 21(8), 2900. https://doi.org/10.3390/ijms21082900
20. Zhao, C., Zhang, H., Song, C., Zhu, J. & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation. pp. 1-41. https://doi.org/10.1016/j.xinn.2020.100017
21. Shabala, S. & Mackay, A. (2011). Ion transport in halophytes. Adv. Bot. Res., 57, pp. 151-199. https://doi.org/10.1016/B978-0-12-387692-8.00005-9
22. Apse, M.P. & Blumwald, E. (2007). Na+ transport in plants. FEBS Lett., 581, pp. 2247-2254. https://doi.org/10.1016/j.febslet.2007.04.014
23. Bonales-Alatorre, E., Shabala, S., Chen, Z.H. & Pottosin, I. (2013). Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiol., 162(2), pp. 940-952. https://doi.org/10.1104/pp.113.216572
24. Bonales-Alatorre, E., Pottosin, I., Shabala, L., Chen, Z.H., Zeng, F., Jacobsen, S.E. & Shabala, S. (2013). Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, Chenopodium quinoa. Int. J. Mol. Sci., 14(5), pp. 9267-9285. https://doi.org/10.3390/ijms14059267
25. Raven, J.A. (1985). Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol., 101, pp. 25-77. https://doi.org/10.1111/j.1469-8137.1985.tb02816.x
26. Shabala, S. & Shabala, L. (2011). Ion transport and osmotic adjustment in plants and bacteria. Biomol. Concepts, 2, pp. 407-419. https://doi.org/10.1515/BMC.2011.032
27. Liang, W., Ma, X., Wan, P. & Liu, L. (2018) Plant sail-tolerance mechanism: a review. Biochem. Biophys. Res. Comm., 495(1), pp. 286-291. https://doi.org/10.1016/j.bbrc.2017.11.043
28. Ibrahimova, U., Kumari, P., Yadav, S., Rastogi, A., Antala, M., Suleymanova, Z., Zivcak, M., Hussain, S., Abdelhamid, M., Hajihashemi, S., Yang, X. & Brestic, M. (2021). Progress in inderstanding salt stress response in plants using biotechnological tools. J. Biotechnol., 329(10), pp. 180-191. https://doi.org/10.1016/j.jbiotec.2021.02.007
29. The 13 healthiest leafy green vegatables. Retrieved from https://www.healthline.com/ nutrition/leafy-green-vegetables
30. Lisiewska, Z., Kmiecik, W., GДbczyXski, P. & SobczyXska, L. (2011). Amino acid profile of raw and as-eaten products of spinach (Spinacia oleracea L.). Food Chem., 126(2), pp. 460-465. https://doi.org/10.1016/j.foodchem.2010.11.015
31. Sikora, E. & Bodziarczyk, I. (2012). Composition and antioxidant activity of kale (Brassica oleracea L. var. acephala) raw and cooked. Acta Sci. Polonorum Technol. Alimentaria, 11(3), pp. 239-248.
32. Pandjaitan, N., Howard, L.R., Morelock, T. & Gil, M.I. (2005). Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. J. Agr. Food Chem., 53(22), pp. 8618-8623. https://doi.org/10.1021/jf052077i
33. Koudela, M. & PetйHkov«, K. (2008). Nutrients content and yield in selected cultivars of leaf lettuce (Lactuca sativa L. var. crispa). Hort. Sci., 35(3), pp. 99-106. https://doi.org/10.17221/3/2008-HORTSCI
34. Sularz, O., SmoleX, S., Koronowicz, A., Kowalska, I. & LeszczyXska, T. (2020). Chemical composition of lettuce (Lactuca sativa L.) biofortified with iodine by KIO3, 5-Iodo-, and 3.5-diiodosalicylic acid in a hydroponic cultivation. Agronomy, 10(7), 1022. https://doi.org/10.3390/agronomy10071022
35. Yang, X., Gil, M.I., Yang, Q. & Tomas-Barberan, F.A. (2022). Bioactive compounds in lettuce: Highlighting the benefits to human health and impacts of preharvest and postharvest practices. Compr. Rev. Food Sci. Food Saf., 21(1), pp. 4-45. https://doi.org/10.1111/1541-4337.12877
36. Guidi Nissim, W., Masi, E., Pandolfi, C., Mancuso, S. & Atzori, G. (2021). The response of halophyte (Tetragonia tetragonioides (Pallas) Kuntz.) and glycophyte (Lactuca sativa L.) crops to diluted seawater and NaCl solutions: A comparison between two salinity stress types. Appl. Sci., 11(14), 6336. https://doi.org/10.3390/app11146336
37. Samec, D., Urlic, B. & Salopek-Sondi, B. (2019). Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Crit. Rev. Food Sci. Nutrit., 59(15), pp. 2411-2422. https://doi.org/10.1080/10408398.2018.1454400
38. Erdogan, B.Y. & Onar, A.N. (2012). Determination of nitrates, nitrites and oxalates in kale and sultana pea by capillary electrophoresis. J. Food Drug Anal., 20(2), pp. 532-558. https://doi.org/10.3923/javaa.2011.2051.2057
39. Lisiewska, Z., Kmiecik, W. & Korus, A. (2008). The amino acid composition of kale (Brassica oleracea L. var. acephala), fresh and after culinary and technological processing. Food Chem., 108(2), pp. 642-648. https://doi.org/10.1016/j.foodchem.2007.11.030
40. Ayaz, F.A., Glew, R.H., Millson, M., Huang, H.S., Chuang, L.T., Sanz, C. & HayПrlПoglu-Ayaz, S. (2006). Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.). Food Chem., 96(4), pp. 572-579. https://doi.org/10.1016/j.foodchem.2005.03.011
41. SYupski, J., Achrem-Achremowicz, J., Lisiewska, Z. & Korus, A. (2010). Effect of processing on the amino acid content of New Zealand spinach (Tetragonia tetragonioides Pall. Kuntze). Int. J. Food Sci. Technol., 45(8), pp. 1682-1688. https://doi.org/10.1111/j.1365-2621.2010.02315.x
42. Friday, C. & Igwe, O.U. (2021). Phytochemical and nutritional profiles of tetragonia tetragonioides leaves grown in Southeastern Nigeria. ChemSearch J., 12(2), pp. 1-5. file:///H:/ajol-file-journals_539_articles_220134_submission_proof_220134-6349-539923-1-10-20220117%20(1).pdf
43. Acosta-Motos, J.R., Ortuno, M.F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, J. & Hermandez, J.A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1). 18. https://doi.org/10.3390/agronomy7010018
44. Abdel-Aal, E.S.M., Akhtar, H., Zaheer, K. & Ali, R. (2013). Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 5(4), pp. 1169-1185. https://doi.org/10.3390/nu5041169
45. Bunea, A., Andjelkovic, M., Socaciu, C., Bobis, O., Neacsu, M., Verhe, R. & Van Camp, J. (2008). Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chem., 108(2), pp. 649-656. https://doi.org/10.1016/j.foodchem.2007.11.056
46. de Azevedo-Meleiro, C.H. & Rodriguez-Amaya, D.B. (2005). Carotenoids of endive and New Zealand spinach as affected by maturity, season and minimal processing. J. Food Comp. and Anal., 18(8), pp. 845-855. https://doi.org/10.1016/j.jfca.2004.10.006
47. Waskiewicz, A., Muzolf-Panek, M. & Golinski, P. (2013). Phenolic content changes in plants under salt stress. In Ahmad, P., Azooz, M. & Prasad, M. (Eds.). Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4747-4_11
48. Flowers, T.J. & Muscolo, A. (2015). Introduction to the special issue: halophytes in a changing world. AoB Plants, 7, plv020. https://doi.org/10.1093/aobpla/plv020
49. Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savoure, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot., 115(3), pp. 433-447. https://doi.org/10.1093/aob/mcu239
50. Kovar, M. & Olsovska, K. (2020). Mechanisms of drought resistance in common spinach (Spinacia oleracea L.) and New Zealand spinach (Tetragonia tetragonoides (Pall.) Kuntze) plants under soil dehydration. J. Central Eur. Agr., 21(2), pp. 275-284. https://doi.org/10.5513/JCEA01/21.2.2618
51. Palaniswamy, U.R., Bible, B.B. & McAvoy, R.J. (2002). Effect of nitrate: ammonium nitrogen ratio on oxalate levels of purslane. Trends in New Crops and New Uses, 11, pp. 453-455.
52. Rabhi, M., Atia, A., Abdelly, C. & Smaoui, A. (2015). New parameters for a better evaluation of vegetative bioremediation, leaching, and phytodesalination. J. Theor. Biol., 383, pp. 7-11. https://doi.org/10.1016/j.jtbi.2015.07.027
53. Hasanuzzaman, M., Nahar, K., Alam, M.M., Bhowmik, P.C., Hossain, M.A., Rahman, M.M. & Fujita, M. (2014). Potential use of halophytes to remediate saline soils. BioMed Res. Int., 589341. https://doi.org/10.1155/2014/589341
54. Bekmirzaev, G., Beltrao, J., Neves, M.A. & Costa, C. (2011). Climatical changes effects on the potential capacity of salt removing species. Int. J. Geol., 5, pp. 79-85.
55. Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M.H., Koyro, H.W., Ranieri, A. & Smaoui, A. (2010). Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Biores. Techn., 101(17), pp. 6822-6828. https://doi.org/10.1016/j.biortech.2010.03.097
56. Niewiadomska, E., Bilger, W., Gruca, M., Mulisch, M., Miszalski, Z. & Krupinska, K. (2011). CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L. Planta, 233, pp. 275-285. https://doi.org/10.1007/s00425-010-1302-y
57. Silvera, K., Neubig, K.M., Whitten, W.M., Williams, N.H., Winter, K. & Cushman, J.C. (2010). Evolution along the crassulacean acid metabolism continuum. Funct. Plant Biol., 37, pp. 995-1010. https://doi.org/10.1071/FP10084
58. Herrera, A. (2009). Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for? Ann. Bot., 103(4), pp. 645-653. https://doi.org/10.1093/aob/mcn145
59. Moreno-Villena, J.J., Zhou, H., Gilman, I.S., Tausta, S.L., Cheung, C.Y.M. & Edwards, E.J. (2022). Spatial resolution of an integrated C4+CAM photosynthetic metabolism. Sci. Adv., pp. 1-14. https://doi.org/10.1101/2021.11.25.470062
60. Cushman, J.C. (2001). Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol., 127(4), pp. 1439-1448. https://doi.org/10.1104/pp.127.4.1439
61. Winter, K. (2019). Ecophysiology of constitutive and facultative CAM photosynthesis. J. Exp. Bot., 70(22), pp. 6495-6508. https://doi.org/10.1093/jxb/erz002
62. Matiz, A., Mioto, P.T., Mayorga, A.Y., Freschi, L. & Mercier, H. (2013). CAM photosynthesis in bromeliads and agaves: what can we learn from these plants? Photosynthesis, 1, pp. 91-134. https://doi.org/10.5772/56219
63. Noctor, G. & Foyer, C.H. (1998). A reevaluation of the ATP: NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity. J. Exp. Bot., 49, pp. 1895-1908. https://doi.org/10.1093/jxb/49.329.1895
64. Nobel, P.S. Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. (1991). New Phytol., 119, pp. 183-205. https://doi.org/10.1111/j.1469-8137.1991.tb01022.x
65. Winter, K. & Smith, J.A.C. (Eds.). (2012). Crassulacean acid metabolism: biochemistry, ecophysiology and evolution. Vol. 114. Springer Science & Business Media.
66. Liittge, U. (2004). Ecophysiology of crassulacean acid metabolism (CAM). Ann. Bot., 93(6), pp. 629-652. https://doi.org/10.1093/aob/mch087
67. KШster, S. & Winter, K. (1985). Light scattering as an indicator of the energy state in leaves of the crassulacean acid metabolism plant Kalanchoe pinnata. Plant Physiol., 79(2), pp. 520-524. https://doi.org/10.1104/pp.79.2.520