The present paper introduces results of studying the leaves and kernels of three maize hybrids rich in nutrients (ZP 341, ZP 434, and ZP 505). Methods of absorption, infrared and Raman spectroscopy were applied to study the role and functions of photosynthetic pigments and organic molecules. Absorption spectroscopy was used to determine the concentration of all types of chlorophyll (chlorophyll a, chlorophyll b) and carotenoids. Infrared spectroscopy showed the presence of different organic molecules in terms of origin and kinetic of the formation of the kernel spectrum, as a whole, and all its spectral bands with different amplitude intensities. Raman spectroscopy was used to reveal the content of carotenoids, organic molecules and some nutrients contained in kernels of maize hybrids. Organic molecules causing the formation of certain spectral bands in the Raman spectrum (carotenoids, glycogen, phosphates, amid III and others) were determined. Conformational and functional changes of photosynthetic pigments that occurred due to changes in the ratio (quotient), which had been determined by the intensity the spectral bands amplitudes, were analysed in particular. The obtained ratios (quotients) indicate different contributions of valence vibrations of their chemical bonds, which inevitably altered the conformation of molecules. The presented results of comprehensive studies point out to minor biogenic differences among the studied maize hybrids.
Keywords: Zea mays L., hybrid, kernel, leaf, chlorophyll, carotenoids, infrared and Raman spectrum, spectral band, molecular conformational properties, vibrations of valence bonds
Full text and supplemented materials
Free full text: PDFReferences
1. Rys, M., Juh«sz, C., SurЩwka, E., Janeczko, A., Saja, D., TЩbi«s, I., Skoczowski, A., Barna, B. & Gullner, G. (2014). Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: Chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy. Plant Physiol. Biochem., 83, pp. 267-278. https://doi.org/10.1016/j.plaphy.2014.08.013
2. Radenoviє, C., Filipoviє, M. & Babiє, M. (2013). Interdependence of delayed chlorophyll fluorescence, photosynthesis and maize breeding. Matica srpska and Institute for Maize «Zemun Polje», Belgrade-Zemun.
3. Adar, F. (2017). Carotenoids - their resonance raman spectra and how they can be helpful in characterizing a number of biological systems. Spectroscopy, 32, pp. 12-20.
4. Sajilata, M.G., Singhal, R.S. & Kamat, M.Y. (2008). The carotenoid pigment zeaxanthin. In: A comprehensive reviews in food science and food safety. Institute of Food Technologists, 7, Iss. 1, pp. 29-49. https://doi.org/10.1111/j.1541-4337.2007.00028.x
5. Maksimov, G.V., Radenovich, Ch., Borisov, Yu.E. & Eremic, M. (1996). Study of the viscosity of excitable membranes using Raman spectroscopy. Biophysics, 41 (2), pp. 400-406.
6. Jahns, P., Latowski, D. & Strzalka, K. (2008). Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim. Biophys. Acta, 1787 (1), pp. 3-14. https://doi.org/10.1016/j.bbabio.2008.09.013
7. Bruno, R. (2004). The electronic structure, stereochemistry and resonance raman spectroscopy of carotenoids. In: The Photochemistry of Carotenoids (pp. 189-201) Kluwer Academic Publishers: New York, Boston, Dordrecht, London, Moscow.
8. Radenoviє, ‡., Jeremic, M., Maksimov, G.V., Filipoviє, M., Trifunoviє, B. & Miлoviє, M.M. (1994). Possibilities of using Raman spectroscopy in studying the resistance of maize inbred lines to stress. Modern agricult. 42 (1-2), pp. 5-19.
9. Radenoviє, ‡., Jeremic, M., Maksimov, G.V., Miлoviє, M.M. & Selakoviє, D. (1998a). Study of the life functions of corn seeds using a non-invasive method - resonance Raman spectra of carotenoids in the membrane. Select. Seed Product., 5 (1-2), pp. 45-51.
10. Andreeva, A., Apostolova, I. & Velitchkova, M. (2011). Temperature dependence of resonance Raman spectra of carotenoids. Spect. Acta A Mol. Biomol. Spect., 78 (4), pp. 1261-1265. https://doi.org/10.1016/j.saa.2010.12.071
11. Radenoviє, ‡., Jeremiє, M., Maximov, G.V., Miлoviє, M.M. & Selakoviє, D. (1998b). Ressonance raman spectra of carotenodes in the maize kernel - a contribution to the evaluation of the kernels resistence to the temperature and the chemical composition of soil. Proc. Natl. Sci., No. 95, pp. 41-50.
12. Radenovich, C.N., Maksimov, G.V., Shutova, V.V., Hao, J., Delich, N.S., Sechansky, M.D. & Popovich, A.S. (2021b). Using infrared and Raman spectroscopy to analyze the state of biomolecules in corn lines Zea mays L. Agricult. Biol., 56, No. 5, pp. 948-957. https://doi.org/10.15389/agrobiology.2021.5.948eng
13. Jackson, M. & Mantsch, H.H. (2006). Infrared spectroscopy, ex vivo tissue analysis, in biomedical spectroscopy. In: Encycl. Analyt. Chem. (pp. 131-156). John Wiley & Sons Ltd.
14. Bulda, O.V., Rassadina, V.V., Alekseychuk, G.N. & Laman, N.A. (2008). Spectrophotometric method for determining the content of carotenes, xanthophylls and chlorophylls in plant seed extracts. Res. Methods, 55, No. 4, pp. 604-611. https://doi.org/10.1134/S1021443708040171
15. Zhuravskaya, A.N., Voronov, I.V. & Poskachina, E.R. (2011). The influence of pre-sowing irradiation of Amaranth (Amaranthus L.) seeds on the photosynthesis of hay offspring. Sci. Educ., No. 4, pp. 65-68.
16. Ilioaia, C., Johnson, M.P., Duffy, C.D., Pascal, A.A., van Grondelle, R., Robert, B. & Ruban, A.V. (2011). Origin of absorption changes associated with photoprotective energy dissipation in the absence of zeaxanthin. J. Biol. Chem., 286 (1), pp. 91-98. https://doi.org/10.1074/jbc.M110.184887
17. Kornilina, V.V. (2012). The influence of the false aspen polypore Phellinus tremulae (Bond.) Bond & Borisov on the content of pigments in aspen leaves in the forests of the Ulyanovsk region. Biol. Sci., Basic Res., No. 9, pp. 568 -572.
18. Larkin, P. (2011). Infrared and Raman spectroscopy. Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-386984-5.10011-4
19. Radenovich, Ch., Maksimov, G.V., Tyutyaev, E.V., Shutova, V.V., Delich, N., Chamdziya, Z., Pavlov, Yo. & Jovanovich, Zh. (2016). Identification of characteristic organic molecules in kernels of maize (Zea mays L.) hybrid grain using infrared spectroscopy. Agricult. Biol., 51, No. 5, pp. 645-653. https://doi.org/10.15389/agrobiology.2016.5.645eng
20. Radenoviє, ‡.N., Grodzinskij, D.M., Petroviє, R.J., Diniє, B.S., Radosavljeviє, M.M., Terziє, D.P., Jankoviє, M.Z. & Rankoviє, D.M. (2017). Characteristics of new maize inbred lines and their hybrids with high nutritional and feed qualities. Fiziol. rast. genet., 49, No. 2, pp. 95-109. https://doi.org/10.15407/frg2017.02.095
21. Radenoviє, ‡.N., Maksimov, G.V., Slatinskaya, O.V., Protopopov, F.F., Deliє, N.S., Pavlov, J.M., Popoviє, A.S. & Se№anski, M.D. (2019). Study of the low intensity spectral bands within the infrared spectra of kernels of high-yielding maize hybrids. Matica srpska J. Natl. Sci. Novi Sad, No. 136, pp. 33-42. https://doi.org/10.2298/ZMSPN1936033R
22. Radenoviє, ‡.N., Deliє, N.S., Radosavljeviє, M.M., Jovanoviє, ¦.V., Se№anski, M.D., Popoviє, A.S., Crevar, M.S. & Radosavljeviє, N.D. (2021a). High-yielding and chemically enriched maize hybrids bred in Serbia - the best basis for super quality feed and food. Military Techn. Courier, 69, No. 1, pp. 114-147. https://doi.org/10.5937/vojtehg69-29512
23. Radenovi№, ‡.N., Maksimov, G.V., Bajuk Bogdanoviє, D., Hao, J., Radosavljeviє, M.M., Deliє, N.S. & ‡amdjija, Z.F. (2021c). The infrared spectrum of the ultra quality maize hybrid preferable for human consumption: the identification of organic molecules and excited state of functional groups in spectral bands of the kernel, endosperm, pericarp and the germ. Fiziol. rast. genet., 53, No. 4, pp. 279-291. https://doi.org/10.15407/frg2021.04.279
24. Radenoviє, ‡., Bajuk-Bogdanoviє, D., Radosavljeviє, M., Deliє, N., Popoviє, A., Se№anski, M. & Crevar, M. (2022a). Assaying of structural parts of hybrid ZP677 grain by IC method disordered total reflection. Selekcija i semenarstvo, 28 (1), pp. 9-22. https://doi.org/10.5937/SelSem2201009R
25. Radenoviє, ‡.N., Maksimov, G.V., Kuramshina, G.M., Shutova, V.V., Hao, J., Deliє, N.S., Sechanski, M.D., Popoviє, A.S., Bajuk-Bogdanoviє, D.V., Radosavljeviє, M.M. & Pavlov, J.M. (2022b). Use of internal reflection spectroscopy for maize (Zea mays L.) grain diagnosis. Agricul. biol., 57, Iss. 5, pp. 933-944. https://doi.org/10.15389/agrobiology.2022.5.933eng
26. Radenoviє, ‡.N., Maksimov, G.V., Kuramshina, G.M., Bogdanoviє, D.V., Mladenoviє, M.R., & Jovanoviє, P.¦. (2023). The analysis of infrared spectra and all spectral bands of kernels, endosperm, pericarp and the germ of maize hybrids: The identification of orbanic molecules with the excited state of functional groups and valence bonds. Russ. Agricult. Sci., 49, No. 1, pp. 32-41. https://doi.org/10.3103/S1068367423010147
27. Arteni, A.A., Fradot, M., Galzerano, D., Mendes-Pinto, M.M., Sahel, J.A., Picaud, S., Robert, B. & Pascal, A.A. (2015). Structure and conformation of the carotenoids in human retinal macular pigment. PLoS One, 10 (8), e0135779. https://doi.org/10.1371/journal.pone.0135779
28. Macernis, M., Sulskus, J., Malickaja, S., Robert, B. & Valkunas, L. (2014). Resonance Raman spectra and electronic transitions in carotenoids: a density functional theory study. J. Phys. Chem. A, 118 (10), pp. 1817-1825. https://doi.org/10.1021/jp406449c
29. Radenoviє, ‡, Markoviє, K., Radoj№iє, A., Anpelkoviє, V. & Kalauzi, A. (2010). Interdependence between oscillations and transients of delayed fluorescence induction processes in the thylakoid membrane of the intact maize leaf-responses to effects of increased temperatures and drought. Proc. Natl. Sci., 118, pp. 7-26. https://doi.org/10.2298/ZMSPN1018007R
30. Vasiliev, A.V., Grinenko, E.V., Schukin, A.O. & Fedulina, T.G. (2007). Infrared spectroscopy of organic and natural compounds. St. Petersburg: S.-Peterb. Gos. Lesotekh. Univ.
31. Tarasevich, B.N. (2012). IR Spectra of the main classes of organic compounds. M.: Mosk. Gos. Univ.
32. Aboud, S.A., Altemimi, A.B., Al-Hilphy, A., Yi-Chen, L. & Cacciola, F. (2019). Comprehensive review on infrared heating applications in food processing. Molecules, 24, No. 22, 4125. https://doi.org/10.3390/molecules24224125