Fiziol. rast. genet. 2022, vol. 54, no. 4, 311-327, doi: https://doi.org/10.15407/frg2022.04.311

Agrobacterium-mediated transformation of promising genotypes of winter wheat using the ornithine-d-aminotransferase gene

Dubrovna O.V., Slivka L.V.

  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

Ornithine-d-aminotransferase (OAT) is an important regulator of cellular metabolism because the reaction catalyzed with this enzyme binds several biochemical systems: the urea cycle, the proline accumulation and degradation cycle, and the polyamine biosynthesis pathway. The introduction of the exogenous oat gene into the plant genome is one of the promising methods for creating abiotic stress-resistant wheat genotypes. The aim of our work was to optimize the conditions of Agrobacterium-mediated transformation of morphogenic calluses of new promising genotypes of winter bread wheat, and to obtain genetically modified plants with the heterologous gene of ornithine-d-aminotransferase. The main parameters of the transformation protocol were studied, in particular the influence of optical density of agrobacterial cells suspension, concentration of the antibiotic cefotaxime, the effect of duration of cocultivation on the frequency of kanamycin-resistant regenerants from callus cultures of apical origin. The regeneration environment has been optimized, which allows to accelerate the process of obtaining genetically modified wheat regenerants, and increase their number. This reduces the biotechnological process, and the material costs for its implementation. Through Agrobacterium-mediated transformation of morphogenic calluses of new promising genotypes of winter bread wheat, regenerants were obtained in the genome of which the complete incorporation of the genetic construct containing oat and nptII transgenes was revealed. The transgenic nature of all plants obtained was confirmed by PCR with primers specific for the oat and nptII genes. The frequency of transformation for the studied genotypes was 0.75—2.5 %.

Keywords: Triticum aestivum, Agrobacterium-mediated transformation, callus cultures, ornithine-d-aminotransferase gene

Fiziol. rast. genet.
2022, vol. 54, no. 4, 311-327

Full text and supplemented materials

Free full text: PDF  

References

1. Shewry, Р.R. (2009). Wheat. J. Exp. Bot., 60, No. 6, pp. 1537-1553. https://doi.org/10.1093/jxb/erp058

2. Wang, K., Liu, H., Du, L. & Ye, X. (2017). Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotech. J., 15, pp. 614-623. https://doi.org/10.1111/pbi.12660

3. Joshi, R., Anwar, K., Das, P., Singla-Pareek, S. & Pareek, A. (2017). Overview of methods for assessing salinity and drought tolerance of transgenic wheat lines. In Wheat Biotechnology. Springer: New York. https://doi.org/10.1007/978-1-4939-7337-8_5

4. Hiei, Y., Ishida, Y. & Komari, T. (2014). Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front. Plant Sci., 5, pp. 628. https://doi.org/10.3389/fpls.2014.00628

5. Anwar, A., Wang, K. & Wang, J. (2021). Expression of arabidopsis ornithine aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat. Plant Cell Rep. https://doi.org/10.21203/rs.3.rs-175437/v1

6. Dubrovna, O.V., Stasik, O.O., Priadkina, G.O. Zborivska, O.V. & Sokolovska-Sergiienko, O.G. (2020). Resistance of genetically modified wheat plants, containing a double-stranded RNA suppressor of the proline dehydrogenase gene, to soil moisture deficiency. Agricult. Sci. Pract., 7, No. 2, pp. 24-34. https://doi.org/10.15407/agrisp7.02.024

7. Mykhalska, S.I., Komisarenko, A.G. & Kurchii, V.M. (2021). Genes of proline metabolism in biotechnology of increasing wheat osmostability. Factors of experimentation evolution of organism, 28, pp. 94-99. [in Ukrainian]. https://doi.org/10.7124/FEEO.v28.1382

8. Hossain, M.A., Hoque, M.A., Burritt, D.J. & Fujita, M. (2014). Proline protects plants against abiotic oxidative stress: biochemical and molecular mechanisms. Ahmad, P. (Ed.): Oxidative damage to plants antioxidant networks and signaling. Academic Press is an imprint of Elsevier. https://doi.org/10.1016/B978-0-12-799963-0.00016-2

9. Kolupaev, Yu.E., Vainer, A.A. & Yastreb, T.O. (2014). Proline: physiological functions and regulation of its content in plants under stress conditions. The bulletin of Kharkiv national agrarian university. Ser. Biol., 2, No. 32, pp. 6-22 [in Russian].

10. Meena, М., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Vaishali, S., Mukesh, Y. & Upadhyay, R. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5, No. 12, p. 02952. https://doi.org/10.1016/j.heliyon.2019.e02952

11. Sarker, U. & Oba, S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Front. Plant Sci., 11, pp. 1-14. https://doi.org/10.3389/fpls.2020.559876

12. Tishchenko, E.N. (2013). Genetic engineering using genes of L-proline metabolism to increase the osmotolerance of plants. Plant Physiol. Gen., 45, No. 6, pp 488-500. http://dspace.nbuv.gov.ua/handle/123456789/159371 [in Russian].

13. Borgo, L., Marur, C.J. & Vieira, L.G.E. (2015). Effects of high proline accumulation on chloroplast and mitochondrial ultrastructure and on osmotic adjustment in tobacco plants. Acta Sci. Agron., 37, pp. 191-199. https://doi.org/10.4025/actasciagron.v37i2.19097

14. Carvalho, K., Campos, M.K., Domingues, D., Pereira L. & Vieira, L. (2013). The accumulation of endogenous proline induces changes in gene expression of several antioxidant enzymes in leaves of transgenic Swingle citrumelo. Mol. Biol. Rep., 40, pp. 3269-3279. https://doi.org/10.1007/s11033-012-2402-5

15. Chen, С., Cui, X., Zhang, P., Wang, Z. & Zhang, J. (2021). Expression of the pyrroline-5-carboxylate reductase (P5CR) gene from the wild grapevine Vitis yeshanensis promotes drought resistance in transgenic Arabidopsis. Plant Physiol. Biochem., 168, pp. 188-201. https://doi.org/10.1016/j.plaphy.2021.10.004

16. Anwar, A., She, M., Wang, K. & Ye, X. (2020). Cloning and molecular characterization of Triticum aestivum ornithine amino transferase (TaOAT) encoding genes. BMC Plant. Biol., 20, pp. 187-187. https://doi.org/10.1186/s12870-020-02396-2

17. Anwar, A., She, M., Wang, K. & Ye, X. (2018). Biological roles of ornithine aminotransferase (OAT) in plant stress tolerance: present progress and future perspectives. J. Mol. Sci., 19, p. 3681. https://doi.org/10.3390/ijms19113681

18. Stranska, J., Kopecny, D., Kopecna, M., Snegaroff, J. & Sebela, M. (2010). Biochemical characterization of pea ornithine-daminotransferase: Substrate specificity and inhibition by di- and polyamines. Biochimie, 92, No. 8, pp. 940-948. https://doi.org/10.1016/j.biochi.2010.03.026

19. Szabados, L. & Savoure, A. (2009). Proline: A multifunctional amino acid. Trends Plant Sci., 15, pp. 89-97. https://doi.org/10.1016/j.tplants.2009.11.009

20. Liu, C., Xue, Z., Tang, D., Shen, Y., Shi, W., Ren, L., Du, G., Li, Y. & Chenget, Z. (2018). Ornithine-d-aminotransferase is critical for floret development and seed setting through mediating nitrogen reutilization in rice. Plant J., pp. 89-97. https://doi.org/10.1111/tpj.14072

21. Sharma, S., Villamor, J.G. & Verslues, P.E. (2011). Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential. Plant Physiol., 157, pp. 292-304. https://doi.org/10.1104/pp.111.183210

22. Liang, X., Zhang, L., Natarajan, S.K. & Becker, D.F. (2013). Proline mechanisms of stress survival. Antioxid. Redox Signal., 19, pp. 998-1011. https://doi.org/10.1089/ars.2012.5074

23. Kalamaki, M.S., Merkouropoulos, G. & Kanellis, A.K. (2009). Can ornithine accumulation modulate abiotic stress tolerance in Arabidopsis? Plant Signal. Behav., 4, No. 11, pp. 1099-1101. https://doi.org/10.4161/psb.4.11.9873

24. Roosens, N.H., Thu, T.T., Iskandar, H.M. & Jacobs, M. (1998). Isolation of the ornithine-delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiol., 117, pp. 263-271. https://doi.org/10.1104/pp.117.1.263

25. Kolupaev, Y.U.E. & Kokorev, O.I. (2019). Participation of polyamines in regulation of redox homeostasis in plants. The bull. Kharkiv nat. agrar. un-ty. Ser. Biol., 1, No. 46, pp. 6-22. [in Russian]. https://doi.org/10.35550/vbio2019.01.006

26. Wu, L., Fan, Z., Guo, L., Li, Y., Zhang, W., Qu, L. & Chen, Z. (2003). Over-expression of an Arabidopsis d-OAT gene enhances salt and drought tolerance in transgenic rice. Chinese Sci. Bull., 48, No. 23, pp. 2594-2600. https://link.springer.com/article/10.1360/03wc0218 https://doi.org/10.1360/03wc0218

27. Roosens, N.H., Bitar, F.A. & Loenders, K. (2002). Overexpression of ornithine-d-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol. Breed., 9, No. 2, pp. 73-80. https://doi.org/10.1023/A:1026791932238

28. Funck, D., Stadelhofer, B. & Koch, W. (2008). Ornithine-delta-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol., 8, No. 40. https://doi.org/10.1186/1471-2229-8-40

29. Gerasimova, S.V., Kolodyazhnaya, Ya.S., Titov, S.E., Romanova, A.V., Koval', V.S., Kochetov, A.V. & Shumnyi, V.K. (2010). Tobacco transformants expressing the Medicago truncatula ornithine aminotransferase cDNA. Russ. J. Genet., 46, No. 7, pp. 1000-1003. https://doi.org/10.1134/S102279541007015X

30. Goncharuk, O.M., Bavol, A.V. & Dubrovna, O.V. (2015). Agrobacterium-mediated transformation of soft wheat in planta using the ornithine aminotransferase gene. Factors of experimental evolution of organisms, 17, pp. 131-135 [in Ukrainian].

31. Komisarenko, A.G., Mykhalska, S.I. & Kurchii, V.M. (2019). Productivity of winter wheat plants with the additional copy of ornithine-d-aminotransferase gene under water deficit conditions. Factors of experimental evolution of organisms, 25, pp. 247-252. [in Ukrainian]. https://doi.org/10.7124/FEEO.v25.1171

32. Dubrovna, O.V., Priadkina, G.O., Mykhalska, S.I. & Komisarenko, A.G. (2021). Water deficiency tolerance of genetically modified common wheat cv. Zymoyarka, containing a heterologous ornithine-d-aminotransferase gene. Agricult. Sci. Pract., 8, No. 1, pp. 25-39. https://doi.org/10.15407/agrisp8.01.014

33. Sparks, C., Doherty, A. & Jones, H. (2014). Genetic transformation of wheat via Agrobacterium-mediated DNA delivery. Methods Mol. Biol., 1099, pp. 235-250. https://doi.org/10.1007/978-1-62703-715-0_19

34. Dubrovna, O.V. & Morgun, B.V. (2018). Current status of research of Agrobacterium-mediated transformation of wheat. Plant Physiol. Genet., 50, No. 3, pp. 187-217. [in Ukrainian]. https://doi.org/10.15407/frg2018.03.187

35. Mamrutha, H.M., Kumar, R., Venkatesh, K., Sharma, P., Kumar, R., Tiwari, V. & Sharma, I. (2014). Genetic transformation of wheat - present status and future potential. J. Wheat Research, 6, No. 2, pр. 107-119. http://epubs.icar.org.in/ejournal/ index.php/JWRReview

36. Kumlehn, J. & Hensel, G. (2009). Genetic transformation technology in the Triticeae. Breeding Sci., 59, pp. 553-560. https://doi.org/10.1270/jsbbs.59.553

37. Bavol, A.V., Dubrovna, O.V. & Lyalko, I.I. (2007). Regeneration of plants from the explants of the top of wheat seedlings shoots. Bul. Ukr. Soc. Genet. Breeders, 5, No. 1-2, pp. 3-10 [in Ukrainian].

38. Sidorov, V. & Duncan, D. (2009). Agrobacterium-mediated maize transformation: immature embryos versus callus. Methods Mol. Biol., 526, pp. 47-58. https://doi.org/10.1007/978-1-59745-494-0_4

39. Ahmad, A., Zhong, H., Wang, W. & Sticklen, M. (2002). Shoot apical meristem: in vitro regeneration and morphogenesis in wheat (Triticum aestivum L). In vitro Cellular & Developm. Biol. Plant, 38, No. 2, pp. 163-167. https://doi.org/10.1079/IVP2001267

40. Dubrovna, O.V., Bavol, A.V., Zinchenko, M.O., Goncharuk, O.M. & Lyalko, I.I. (2012). Influence of cefotaxime on morphogenesis in culture of apical meristems and mature wheat germs. Physiology and Biochemistry of Cultivated Plants, 44, No. 3, pp. 218-224 [in Ukrainian].

41. Wu, H., Sparks, S., Amoah, B. & Jones, H. (2003). Factors influencing successful Agrobacterium mediated genetic transformation of wheat. Plant Cell Rep., 21, No. 7, pp. 659-668. https://doi.org/10.1007/s00299-002-0564-7

42. Ding, L., Li, S. & Gao, J. (2009). Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol. Biol. Rep., 36, pp. 29-36. https://doi.org/10.1007/s11033-007-9148-5

43. Pat. 111284 UA. A method of increasing the regenerative capacity of callus cultures of bread wheat by Agrobacterium-mediated transformation, Dubrovna, O.V., Bavol, A.V., Goncharuk, O.M. & Voronova, S.S. Publ. 10.11.2016 [in Ukrainian].