Fiziol. rast. genet. 2022, vol. 54, no. 2, 161-176, doi: https://doi.org/10.15407/frg2022.02.161

Reaction of miscanthus w gi­ganteus photosynthetic apparatus to diesel pollution and soil restoration by biochar

Herts A.I.1, Kononchuk O.B.1, Herts N.V.1, Pidlisnyuk V.V.2, Khomenchuk V.O.1, Pyda S.V.1

  1. Ternopil Volodymyr Hnatiuk National Pedagogical University 2 M. Kryvonosa St.,Ternopil, 46027, Ukraine
  2. Jan Evangelista PurkynЖ University in ¤stН nad Labem 3632/15 Pasteurova St., ¤stН nad Labem, 400 96, Czech Republic

In the conditions of vegetation experiment the photosynthetic apparatus features of the of Miscanthus w giganteus leaves have been studied under the influence of soil contamination by diesel fuel (0.25—5 g/kg) and application of biochar fertilizer (5 %). The aim was to research the photosynthetic activity parameters as markers of the adaptability of the plant M. w giganteus to oil contamination of the soil. Analysis of the state of the primary processes of photosynthesis in the chloroplasts of M. w giganteus leaves has been carried out using intact, non-invasive research methods based on the phenomenon of chlorophyll fluorescence a. Changes in the quantum efficiency of FS II and some parameters of the OJIP test in response to the toxic effects of petroleum products have been described, and the effect of biochar application on these indicators has been analyzed. It has been found that the introduction of biochar into the diesel-contaminated soils reduces the toxic effects of pollutants on miscanthus, which manifested itself in increasing the efficiency of excitation energy by chlorophyll molecules in FS II antennas, reducing thermal energy dissipation and maintaining higher chlorophyll content. This allows you to more efficiently use the absorbed light energy by the leaves and maintain the functional state of photosynthesis of plants. Non-photochemical quenching (fNPQ) and dissipated energy flux per one reaction center (DI0/RC) are the most sensitive to the effects of soil pollution by diesel have been found. It is proposed to use these indicators as markers for assessing the impact of stressors. It has been ascertained that the application of 5 % biochar was sufficient to reduce stress and optimize the photosynthetic parameters of chloroplasts of M. w giganteus leaves under conditions of plant growth in diesel-contaminated soils.

Keywords: Miscanthus w giganteus J.M. Greef & Deuter ex Hodkinson & Renvoiz, photosynthesis, chlorophyll fluorescence, diesel pollution, biochar

Fiziol. rast. genet.
2022, vol. 54, no. 2, 161-176

Full text and supplemented materials

Free full text: PDF  

References

1. Shukry, W., Al-Hawas, G., Al-Moaik, R. & El-Bendary, M. (2013). Effect of Petroleum Crude Oil on Mineral Nutrient Elements and Soil Properties of Jojoba Plant (Simmondsia chinensis). Acta Bot. Hung., 55, Iss. 1-2, pp. 117-133. https://doi.org/10.1556/ABot.55.2013.1-2.8

2. Baruah, P., Saikia, R.R., Baruah, P.P. & Deka, S. (2014). Effect of Crude Oil Contamination on the Chlorophyll Content and MorphoAnatomy of Cyperus brevifolius (Rottb.) Hassk. Environ Sci Pollut Res., 21, Iss. 21, pp. 12530-12538. https://doi.org/10.1007/s11356-014-3195-y

3. Terek, O.I. (2018). Mechanisms of plant adaptation to oil pollution. Studia Biologica, 12, No. 3-4, pp. 141-164 [in Ukrainian]. https://doi.org/10.30970/sbi.1203.579

4. Brtnicky, M., Datta, R., Holatko, J., Bielska, L., Gusiatin, Z.M., Kucerik, J., Hammerschmiedt, T., Danish, S., Radziemska, M., Mravcova, L., Fahad, S., Kintl, A., Sudoma, M., Ahmed, N. & Pecina, V. (2021). A critical review of the possible adverse effects of biochar in the soil environment (Review). Sci. Total Environ., 796, 148756. https://doi.org/10.1016/j.scitotenv.2021.148756

5. Tomczyk, A., Sokolowska, Z. & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environ. Sci. and Bio/Technol., 19, Iss. 1, pp. 191-215. https://doi.org/10.1007/s11157-020-09523-3

6. Yang, Ding, Yunguo, Liu, Shaobo, Liu, Zhongwu, Li, Xiaofei, Tan, Xixian, Huang, Guangming, Zeng, Lu, Zhou & Bohong, Zheng (2016). Biochar to improve soil fertility. A review. Agron. Sustain. Dev., 36, Iss. 2, 36. https://doi.org/10.1007/s13593-016-0372-z

7. Pidlisnyuk, V., Herts, A., Khomenchuk, V., Mamirova, A., Kononchuk, O. & Ust'ak, S. (2021). Dynamic of Morphological and Physiological Parameters and Variation of Soil Characteristics during Miscanthus w giganteus Cultivation in the Diesel-Contaminated Land. Agronomy, 11, Iss. 4, 798. https://doi.org/10.3390/agronomy11040798

8. Saletnik, B., Zagula, G., Bajcar, M., Czernicka, M. & Puchalski, C. (2018). Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus w Giganteus). Energies, 11, Iss. 10, 2535. https://doi.org/10.3390/en11102535

9. Susarla, S., Medina, V.F. & McCutcheon, S.C. (2002). Phytoremediation: An Ecological Solution to Organic Chemical Contamination. Ecol. Eng., 18, Iss. 5, pp. 647-658. https://doi.org/10.1016/S0925-8574(02)00026-5

10. Pidlisnyuk, V., Stefanovska, T., Lewis, E.E., Erickson, L.E. & Davis, L.C. (2014). Miscanthus as a Productive Biofuel Crop for Phytoremediation. Crit. Rev. Plant Sci., 33, Iss. 1, pp. 1-19. https://doi.org/10.1080/07352689.2014.847616

11. Podan, I.I. & Dzhura, N.M. (2019). Influence of oil pollution and humates on growth of miscanthus plants. Ecological Sciences, 2019, No. 2 (25), pp. 182-186 [in Ukrainian]. https://doi.org/10.32846/2306-9716-2019-2-25-30

12. Hutsol, T., Glowacki, S., Mudryk, K., Yermakov, S., Kucher, O., Knapczyk, A., Muliarchuk, O., Koberniuk, O., Kovalenko, N., Kovalenko, V., Ovcharuk, O. & Prokopchuk, L. (2021). Agrobiomass of Ukraine - Energy Potential of Central and Eastern Europe (Engineering, Technology, Innovation, Economics): monograph. Warsaw: Libra-Print. http://dglib.nubip.edu.ua:8080/jspui/handle/123456789/8102

13. Shadchina, T.M., Gulyaev, B.I., Kiriziy, D.A., Stasik, O.O., Pryadkina, G.O. & Storozhenko, V.O. (2006). Regulation of photosynthesis and productivity of plants. Physiological and ecological aspects. Kyiv: Ukrainian Phytosociological Center [in Ukrainian].

14. Kiriziy, D.A., Stasik, O.O., Pryadkina, G.A. & Shadchina, T.M. (2014). Photosynthesis, Vol. 2, Assimilation of CO2 and the mechanisms of its regulation. Logos, Kyiv [in Russian].

15. Kalaji, H.M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., Goltsev, V., Guidi, L., Jajoo, A., Li, P., Losciale, P., Mishra, V.K., Misra, A.N., Nebauer, S.G., Pancaldi, S., Penella, C., Pollastrini, M., Suresh, K., Tambussi, E., Yanniccari, M., Zivcak, M., Cetner, M.D., Samborska, I.A., Stirbet, A., Olsovska, K., Kunderlikova, K., Shelonzek, H., Rusinowski, S. & B·ba, W. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth Res., 132, Iss.1, pp. 13-66. https://www.ncbi.nlm.nih.gov/pubmed/27815801 https://doi.org/10.1007/s11120-016-0318-y

16. Kramer, D.M., Johnson, G., Kiirats, O. & Edwards, G.E. (2004). New Fluorescence Parameters for the Determination of QA Redox State and Excitation Energy Fluxes. Photo­synthesis Research, 79, Iss. 2, 209. https://doi.org/10.1023/B:PRES.0000015391.99477.0d

17. Kuhlgert, S., Austic, G., Zegarac, R., Osei-Bonsu, I., Hoh, D., Chilvers, M.I., Roth, M.G., Bi, K., TerAvest, D., Weebadde, P. & Kramer, D.M. (2016). MultispeQ Beta: A Tool for Large-Scale Plant Phenotyping Connected to the Open PhotosynQ Network. R Soc Open Sci., 3, Iss. 10, 160592. https://doi.org/10.1098/rsos.160592

18. Genty, B., Briantais, J.-M. & Baker, N.R. (1989). The Relationship between the Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence. Biochim. Biophys. Acta - Gen. Subj., 990, Iss. 1, pp. 87-92. https://doi.org/10.1016/S0304-4165(89)80016-9

19. Goltsev, V.N., Kalaji, M.H., Kouzmanova, M.A. & Allakhverdiev, S.I. (2014). Variable and Delayed Chlorophyll a Fluorescence - Basics and Application in Plant Sciences. Moscow-Izshevsk: Institute of Computer Sciences [in Russian].

20. Jolliffe, I.T. (2002). Principal Component Analysis. Second Edition. NY, New York: Springer. https://doi.org/10.1007/b98835

21. Stasik, O.O., Kiriziy, D.A. & Priadkina, G.O. (2021). Photosynthesis and productivity: main scientific achievements and innovative developments. Plant Physiology and Genetics, 53, No. 2. pp. 160-184 [in Ukrainian]. https://doi.org/10.15407/frg2021.02.160

22. Netto, A.T., Campostrini, E., de Oliveira, J.G. & Bressan-Smith, R.E. (2005). Photosynthetic Pigments, Nitrogen, Chlorophyll a Fluorescence and SPAD-502 Readings in Coffee Leaves. Scientia Horticulturae, 104, Iss. 2, pp. 199-209. https://doi.org/10.1016/j.scienta.2004.08.013

23. Kanazawa, A & Kramer, D.M. (2002). In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. PNAS, 99, Iss. 20, pp. 12789-12794. https://doi.org/10.1073/pnas.182427499

24. Bielczynski, L.W., ˜·cki, M.K., Hoefnagels, I., Gambin, A., & Croce, R. (2017). Leaf and Plant Age Affects Photosynthetic Performance and Photoprotective Capacity. Plant Physiol., 175, Iss. 4, pp. 1634-1648. https://doi.org/10.1104/pp.17.00904

25. Ben-Jabeur, M., Gracia-Romero, A., Lypez-Cristoffanin, C., Vicente, R., Kthiri, Z., Kefauver, S.C., Lypez-Carbonell, M., Serret, M.D., Araus, J.L. & Hamada, W. (2021).The promising MultispeQ device for tracing the effect of seed coating with biostimulants on growth promotion, photosynthetic state and water-nutrient stress tolerance in durum wheat. Euro-Mediterr J Environ Integr., 6, Iss. 1, 8. https://doi.org/10.1007/s41207-020-00213-8

26. Tietz, S., Hall, C.C., Cruz, J.A. & Kramer, D.M. (2017). NPQ(T): A Chlorophyll Fluorescence Parameter for Rapid Estimation and Imaging of Non-Photochemical Quenching of Excitons in Photosystem-II-Associated Antenna Complexes. Plant, Cell & Environment., 40, Iss. 8, pp. 1243-1255. https://doi.org/10.1111/pce.12924

27. Kanazawa, A., Ostendorf, E., Kohzuma, K., Hoh, D., Strand, D.D., Sato-Cruz, M., Savage, L., Cruz, J.A., Fisher, N., Froehlich, J.E. & Kramer, D.M. (2017). Chloroplast ATP Synthase Modulation of the Thylakoid Proton Motive Force: Implications for Photosystem I and Photosystem II Photoprotection. Front. Plant Sci., 8, 719. https:// www.frontiersin.org/articles/10.3389/fpls.2017.00719 https://doi.org/10.3389/fpls.2017.00719

28. Rott, M., Martins, N.F., Thiele, W., Lein, W., Bock, R., Kramer, D.M. & SchШttler, M.A. (2011). ATP synthase repression in tobacco restricts photosynthetic electron transport, CO2 assimilation, and plant growth by overacidifcation of the thylakoid lumen. Plant Cell, 23, Iss. 1, pp. 304-321. https://doi.org/10.1105/tpc.110.079111

29. Wang, S., Zheng, J., Wang, Yu., Yang, Q., Chen, T., Chen, Y., Chi, D., Xia, G., Siddique, K.H.M. & Wang, T. (2021, May). Photosynthesis, Chlorophyll Fluorescence, and Yield of Peanut in Response to Biochar Application. Front. Plant Sci., 12, 650432. https://doi.org/10.3389/fpls.2021.650432