Fiziol. rast. genet. 2021, vol. 53, no. 5, 425-434, doi: https://doi.org/10.15407/frg2021.05.425

Anatomic-physiological changes in horse bean seedlings under the influence of gibberellin and tebuconazole at conditions of photo- and scotomorphogenesis

Kuryata V.G., Kuts B.О., Poprotska I.V.

  • Vinnytsia Mykhailo Kotsiubynskyi State Pedagogical University 32 Ostrozkogo St., Vinnytsia 21000, Ukraine

The combination of light/dark external factor, GA3 and GA3 synthesis inhibitor tebuconazole significantly changed the pattern of the source-sink relationship in sprouts of horse bean during seed germination. The usage of gibberellin at light leads to increase of reserve starch hydrolysis in germinating horse bean seeds. The absence of light was a more significant factor for the starch hydrolysis than the exogenous use of gibberellin and the antigibberellin substance tebuconazole. The nitrogen-containing compounds content and reserve fats at early stages of germination in cotyledons did not change significantly, indicating less intensive use of these compounds for morphogenesis during this period. Seed germination was accompanied by a decrease under the action of gibberellin at light, and under the action of tebuconazole — an increase, in root and epicotyl diameter due to the peculiarities of histogenesis. Under the influence of gibberellic acid, total epiblem and the primary root cortex thickened at light, and the epidermis and the primary cortex of hypocotyl — at light and dark. The opposite change was caused by tebuconazole — the increase of tissue complex thickness occurred under both photo- and scotomorphogenesis conditions. The number of xylem vessels in the vascular-fibrous bunches in roots increased under the influence of tebuconazole in dark. In epicotyls, the increase occurred in the number of vessels in bunches under the action of tebuconazole both at light and in dark. Insofar as histogenesis is controlled by phytohormones, established histological changes indicated a significant re-structuring of the entire hormonal complex of seedlings.

Keywords: Vicia faba L., morphogenesis, source-sink system, seed germination, light, gibberellins, retardants

Fiziol. rast. genet.
2021, vol. 53, no. 5, 425-434

Full text and supplemented materials

Free full text: PDF  

References

1. Wang, Q. & Lin, C. (2020). Mechanisms of cryptochrome-mediated photoresponses in plants. Ann. Rev. Plant Biol., 71, pp. 103-129. https://doi.org/10.1146/annurev-arplant-050718-100300

2. Jiang, L. & Li, S. (2015). Signaling cross talk under the control of plant photoreceptors. Bjorn L. (Eds.) (pp. 177-187), Photobiology. Springer, New York. https://doi.org/10.1007/978-1-4939-1468-5_14

3. Miao, Y., Chen, Q., Qu, M., Gao, L. & Hou, L. (2019). Blue light alleviates «red light syndrome» by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber plants. Sci. Horticult., 257, pp. 108680. https://doi.org/10.1016/j.scienta.2019.108680

4. Li, K., Gao, Z., He, H., Terzaghi, W., Fan, L.-M., Deng, X.W. & Chen, H. (2015). Arabidopsis DET1 represses photomorphogenesis in part by negatively regulating DELLA protein abundance in darkness. Molecul. Plant, 8, pp. 622-630. https://doi.org/10.1016/j.molp.2014.12.017

5. Galvao, V.C. & Fankhauser, C. (2015). Sensing the light environment in plants: photoreceptors and early signalling steps. Current Opinion in Neurobiol., 34, pp. 46-53. https://doi.org/10.1016/j.conb.2015.01.013

6. Bhatla, S.C. (2018). Light Perception and Transduction. In: Plant Physiology, Development and Metabolism. (pp. 519-558), Springer, Singapore. https://doi.org/10.1007/978-981-13-2023-1_13

7. Kutschera, U. & Briggs, W.R. (2003). Seedling development in buckwheat and the discovery of the photomorphogenic shade-avoidance response. Plant Biol. (Stuttg)., 15, No. 6, pp. 931-940. https://doi.org/10.1111/plb.12077

8. Wu, S.H. (2014). Gene expression regulation in photomorphogenesis from the perspective of the central dogma. Ann. Rev. Plant Biol., 65, pp. 311-333. https://doi.org/10.1146/annurev-arplant-050213-040337

9. Dong, J., Tang, D., Gao, Z., Yu, R., Li, K., He, H., Terzaghi, W., Deng, X. & Chen, H. (2014). Arabidopsis DEETIOLATED1 represses photomorphogenesis by positively regulating phytochrome-interacting factors in the dark. Plant Cell, 26, pp. 3630-3645. https://doi.org/10.1105/tpc.114.130666

10. Liang, S., Gao, X., Wang, Y., Zhang, H., Yin, K., Chen, S., Zhang, M. & Zhao, R. (2020). Phytochrome-interacting factors regulate seedling growth through ABA signaling. Biochem. and Biophys. Res. Comm., 526, No. 4, pp. 1100-1105. https://doi.org/10.1016/j.bbrc.2020.04.011

11. Kong, S. & Okajima, K. (2016). Diverse photoreceptors and light responses in plants. J. Plant Research, 129, pp. 111-114. https://doi.org/10.1007/s10265-016-0792-5

12. Lee, H.J., Park, Y.J., Ha, J.H., Baldwin, I.T. & Park, C.M. (2017). Multiple routes of light signaling during root photomorphogenesis. Trends in Plant Sci., 22, No. 9, pp. 803-812. https://doi.org/10.1016/j.tplants.2017.06.009

13. Bhatnagar, A., Singh, S., Khurana, J.P. & Burman, N. (2020). HY5-COP1: the central module of light signaling pathway. J. Plant Biochem. and Biotechnol., 29, No. 4, pp. 1-21. https://doi.org/10.1007/s13562-020-00623-3

14. Josse, E.M. & Halliday, K.J. (2008). Skotomorphogenesis: The dark side of light signalling. Current Biology, 18, No. 24, pp. 1144-1146. https://doi.org/10.1016/j.cub.2008.10.034

15. Kuryata, V.G. & Polyvanyi, S.V. (2018). Formation and functioning of source-sink relation system of oil poppy plants under treptolem treatment towards crop productivity. Ukr. J. Ecol., 8, No. 1, pp. 11-20. https://doi.org/10.15421/2018_182

16. Kuryata, V., Kuts, B. & Prysedsky, Yu. (2020). Effect of gibberellin on the use of reserve substances deposited in Vicia faba L. seeds at the phase of heterotrophic development under the conditions of photo- and skotomorphogenesis. Biologija, 66, No. 3, pp. 159-167. https://doi.org/10.6001/biologija.v66i3.4311

17. AOAC (2010). Official methods of analysis of association of analytical chemist international 18th ed. Rev. 3. Asso of Analytical Chemist. Gaithersburg, Maryland, USA.

18. Rademacher, W. (2016). Chemical regulators of gibberellin status and their application in plant production. Annu Plant Rev., 49, pp. 359-403. https://doi.org/10.1002/9781119210436.ch12

19. Kuryata, V.G. & Poprotska, I.V. (2019). Physiological and biochemical basics of application of retardants in plant growing. Vinnitsa: Tvory [in Ukrainian].

20. Kuriata, V.H., Kuts B.O. & Poprotska I.V. (2021). Diia tebukonazolu na vykorystannia deponovanykh u nasinyni Vicia faba L. rezervnykh rechovyn u heterotrofnu fazu rozvytku za umov foto- i skotomorfohenezu. Fiziol. rast. genet., 53, No. 1, pp. 63-73 [in Ukrainian]. https://doi.org/10.15407/frg2021.01.063

21. Poprotska, I.V. & Kuryata, V.G. (2017). Features of gas exchange and use of reserve substances in pumpkin seedlings in conditions of skoto- and photomorphogenesis under the influence of gibberellin and chlormequatchloride. Regulatory Mechanisms in Biosystems, 8, No. 1, pp. 71-76. https://doi.org/10.15421/021713

22. Poprotska, I.V. (2017). Regulation of sourse-sink relations in plants in the assimilates depot-growth system during germination. Vinnytsia: TOV «Nilan-LTD» [in Ukrainian].

23. Poprotska, I., Kuryata, V., Khodanitska, O., Polyvanyi, S., Golunova, L. & Prysedsky, Yu. (2019). Effect of gibberellin and retardants on the germination of seeds with different types of reserve substances under the conditions of skoto- and photomorphogenesis. Biologija, 65, No. 4, pp. 296-307. https://doi.org/10.6001/biologija.v65i4.4123

24. Kuriata, V.H., Tkachuk, O.O., Remeniuk, H.L. & Huliaiev, B.I. (2002). Vplyv retardantiv na rostovi protsesy, morfohenez i produktyvnist roslyn kartopli. Fiziologia biokhimia kult. rastenii, 34, No. 4, pp. 305-310 [in Ukrainian].

25. Rohach, V.V., Kuriata, V.H., Buina, I.O. & Buinyi, O.V. (2017). Dynamika nakopychennia i pererozpodilu riznykh form vuhlevodiv v orhanakh roslyn tomativ za dii rehuliatoriv rostu. Nauk. Zap. Ternop. Nats. Ped. Univ. Ser. Biol., 3, No. 70, pp. 174-179 [in Ukrainian].

26. Kuryata, V.G. & Kravets, O.O. (2017). Peculiarities of the growth, formation of leaf apparatus and productivity of tomatoes under action of retardants folicur and ethephon. Bull. Kharkiv Nat. Agr. Univ. Ser. Biol., 1, No. 40, pp. 127-132. https://doi.org/10.35550/vbio2017.01.127

27. Falcioni, R., Moriwaki, T., de Oliveira, D.M., Andreotti, G.C., Souza, L.A., Dos Santos, W.D., Bonato, C.M. & Antunes, W.C. (2018). Increased gibberellins and light levels promotes cell wall thickness and enhance lignin deposition in xylem fibers. Front. Plant Sci., 20, No. 9, pp. 1391. https://doi.org/10.3389/fpls.2018.01391

28. Khodanitska, O.O. & Kuriata, V.H. (2017). Diia khlormekvatkhlorydu i treptolemu na morfohenez, produktyvnist ta zhyrnokyslotnyi sklad nasinnia lonu oliinoho. Vinnytsia: TOV «Nilan-LTD» [in Ukrainian].

29. Tekalign, T., Hammes, P.S. & Robbertse, J. (2005). Paclobutrazolinduced leaf, stem, and root anatomical modifications in potato. Hort Science, 40, No. 55, pp. 1343-1346. https://doi.org/10.21273/HORTSCI.40.5.1343