Fiziol. rast. genet. 2021, vol. 53, no. 3, 216-239, doi: https://doi.org/10.15407/frg2021.03.216

Genetic consequences of Chornobyl disaster: 35 years of study

Morgun V.V., Yakymchuk R.A.

  • Institute of Plant  Physiology and Genetics, National Academy of Sciences of Ukraine  31/17 Vasylkivska St., Kyiv, 03022, Ukraine

The increase of the environment radiation level, which results from the mining and the application of natural and artificial radionuclide, nuclear accidents, causes the changes of a gene pool of plants and animals as well as the serious genetic and somatic disorders in a human body. The accident at Chornobyl NPP is one of the largest disasters in the history of nuclear energy; it is unique by the number of radionuclide in the environment, the area of radionuclide contamination and the severity of biological consequences. Genetic effects, induced by the environmental contamination by radioactive releases, are the following: the death of organisms, the increase of mutation frequency, the effects of genome instability in populations, adaptive reactions, the decrease in the number of individuals of some species, the change in the direction of natural selection towards more primitive forms, the violation in gender relationship, the activation of epigenetic mechanisms. From the very first days after Chornobyl disaster took place and till present time, the unique research has been carried out at the Department of Plant Genetic Improvement of the Institute of Plant Physiology and Genetics of NAS of Ukraine, aimed at studying mutational variability of wheat (Triticum aestivum L.) under a prolonged and chronic effect of radionuclide contamination of the soil and water reservoirs in the alienation zone of ChNPP. Despite a considerable improvement of a radio-ecological situation 35 years after the disaster at ChNPP, the latest researches prove that in a near alienation zone living organisms still contain a high level of chromosome aberrations and visible mutations. A direct correlation between the frequency of chromosome aberrations and the density of the soil contamination with radionuclide was not recorded. A high level of mutational variability, induced by radionuclide contamination of the alienation zone of ChNPP, confirms the expediency to use the indices of its mutagenic activity when permissible standards of radiation factors of technogenic origin in the soil are determined. The analysis of literary data and our own long-term researches indicates the increasing amount of radionuclide contamination and the expanding of areas with elevated radiation level which are dangerous for all living organisms. A regular genetic monitoring of the mentioned areas is to become a mandatory component of a scientifically-grounded placement of varietal crops, the housing, industrial, and livestock premises construction, aimed at the protection of people’s health, a flora and fauna world.

Keywords: alienation zone, radionuclide contamination, ionizing radiation, genetic consequences, chromosome aberrations, mutational variability

Fiziol. rast. genet.
2021, vol. 53, no. 3, 216-239

Full text and supplemented materials

Free full text: PDF  

References

1. Gudkov, D., Kuzmenko, M., Kiryeyev, S., Nazarov, O., Shevtsova, N., Dzyubenko, O. & Kahlyan, O. (2008). Radiological problems of aquatic ecosystems exclusion zone of Chernobyl. Visnyk Natsionalnoyi akademiyi nauk Ukrayiny, No. 4, pp. 44-55 [in Ukrainian].

2. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation 2010 (2011). New York: United Nations. URL: https://www.unscear.org/docs/publications/2010/UNSCEAR_2010_Report.pdf.

3. Morgun, V.V. & Yakymchuk, R.A. (2016). Genetic consequences of radionuclide contamination of the environment after the accident at Chornobyl nuclear power plant. Fiziologiya rasteniy i genetika, 48, No. 4, pp. 279-297 [in Ukrainian]. https://doi.org/10.15407/frg2016.04.279

4. Clauben, A. & Rosen, A. (2016). The health effects of the nuclear disasters in Fukushima and Chernobyl 30 years living with Chernobyl, 5 years living with Fukushima. International Physicians for the Prevention of Nuclear War. Berlin: IPPNW Germany.

5. Sanzharova, N.I., Fesenko, S.V., Tsyibulko, N.N., Kashparov, V.A., Panov, A.V., Perevolotskiy, A.N. & Shubina, O.A. (2018). Features of the formation of radioactive contamination of the territory as a result of accidental emissions from the Chernobyl nuclear power plant and the dynamics of changes in the radiation situation. In Sanzharova, N. I. & Fesenko, S. V. (Eds.) Radioecological consequences of the accident at the Chernobyl nuclear power plant: biological effects, migration, rehabilitation of contaminated areas (pp. 12-38). Moscow: RAS [in Russian].

6. Balonov, M. I. (2011). International Assessment of the Consequences of the Chernobyl Accident: UN Chernobyl Forum (2003-2005) and UNSCEAR (2005-2008). Radiatsionnaya genetika, 4, No. 2, pp. 31-39 [in Russian].

7. Morgun, V. V. & Yakymchuk, R. A. (2010). Genetic consequences of the Chernobyl NPP. Kyiv: Logos.

8. Yablokov, A. V. (2009). Mortality after the Chernobyl Accident. Annals of the New York Academy Sciences, No. 1181, pp. 192-216. https://doi.org/10.1111/ j.1749-6632.2009.04828.x.

9. Chernobyl Accident 1986 (2020). World Nuclear Association. URL: https://www.world-nuclear.org/information-library/safety-and-security/safety-of-plants/chernobyl-accident.aspx.

10. Hinton, T.G., Alexakhin, R., Balonov, M., Gentner, N., Hendry, J., Prister, B., Strand, P. & Woodhead, D. (2007). Radiation-induced effects on plants and animals: findings of the united nations chernobyl forum. Health Physics, 93, No. 5, pp. 427-440. https://doi.org/10.1097/01.HP.0000281179.03443.2e

11. Tsukimori, O. & Hamada, K. (2013). Japan government : Fukushima plant leaks 300 tpd of contaminated water into sea. Reuters. August 7. URL: https://www.reuters.com/article/us-japan-fukushima-water/japan-government-fukushima-plant-leaks-300-tpd-of-contaminated-water-into-sea-idUSBRE97 60AU20130807

12. Yakymchuk, R.A. (2019). Genetic consequences of the contamination of the environment with natural and techno-genic mutagenic factors. Kyiv: Logos.

13. Fuller, N., Ford, A. T., Lerebours, A., Gudkov, D.I., Nagorskaya, L.L. & Smith, J.T. (2019). Chronic radiation exposure at Chernobyl shows no effect on genetic diversity in the freshwater crustacean. Asellus aquaticus thirty years on. Ecology and Evolution, 9, No. 18, pp. 10135-10144. https://doi.org/10.1002/ece3.5478

14. Geraskin, S.A. & Fesenko, S.V. (2018). Effect of accidental emissions from the Chernobyl nuclear power plant on biota. In Sanzharova, N. I. & Fesenko, S. V. (Eds.) Radioecological consequences of the accident at the Chernobyl nuclear power plant: biological effects, migration, rehabilitation of contaminated areas (pp. 60-90), Moscow: RAS [in Russian].

15. Smirnov, Y.G. & Suvorova, L.I. (1996). Assessment and prediction of the biological effect of radioactive contamination on the vegetation cover in the accident zone at the Chernobyl nuclear power plant. Impact of radioactive contamination on terrestrial ecosystems in the Chernobyl accident zone, Sb. tr. Syktyvkar: Komi UrO RAN, 2, No. 145, pp. 27-37.

16. Grodzinskiy, D.M. & Gudkov, I.N. (2006). Radiation damage to plants in the zone of influence of the accident at the Chernobyl nuclear power plant. Radiatsionnaya biologiya. Radioekologiya, 46, No. 2, pp. 189-199 [in Russian].

17. Krivolutsky, D., Martushov, V. & Ryabtsev, I. (1999). Influence of radioactive contamination on fauna in the area of the Chernobyl NPP during first years after the accident (1986-1988). In Bioindikatory radioaktivnogo zagryazneniya (pp. 106-122), Moscow: Nauka [in Russian].

18. Taskaev, A. & Testov, B. (1999). Number and reproduction of mouse-like rodents in the Chernobyl accident area. In Bioindicators of radioactive contamination (pp. 200-205), Moscow: Nauka [in Russian].

19. Kovalchuk, I., Abramov, V., Pogribny, I. & Kovalchuk, O. (2004). Molecular aspects of plant adaptation to life in the Chernobyl zone. Plant Physiology, 135, pp. 357-363. https://doi.org/10.1104/pp.104.040477

20. Geras'kin, S.A. & Volkova, P.Y. (2014). Genetic diversity in Scots pine populations along a radiation exposure gradient. Science of the Total Environment, 496, pp. 317-327. https://doi.org/10.1016/j.scitotenv.2014.07.020

21. Kostenko, S.A., Buntova, Y.G. & Glazko, T.T. (2001). Species-specific destabilization of the karyotype under conditions of radionuclide contamination (ChNPP) in the voles Microtus arvalis, Cletrionomys glareolus, Microtus oeconomus. Cytology and Genetics, 35, No. 2, pp. 11-18.

22. Glazko, V.I. & Glazko, T.T. (2005). Gene pool changes after ecological catastrophe (Chernobyl's example). Ahroekolohichnyy zhurnal, No. 3, pp. 42-51.

23. Makeyeva, A.P., Yemel'yanova, N.G., Belova, N.V. & Ryabov, I.N. (1994). Radiobiological analysis of silver carp Hypophthalmichthys molitrix in the cooling pond of the Chernobyl nuclear power plant in the post-accident period. II. Development of the reproductive system in the offspring of the first generation. Voprosy ikhtiologii, 34, No. 5, pp. 681-696 [in Russian].

24. Grodzinskiy, D.M. (2000). Realities of the post-Chernobyl era. Visnyk NAN Ukrayiny, No. 7, pp. 27-35 [in Ukrainian].

25. Geras'kin, S.A., Fesenko, S.V. & Aleksakhin, R.M. (2006). The impact of the accidental release of the Chernobyl nuclear power plant on biota. Radiatsionnaya biologiya. Radioekologiya, 46, No. 2, pp. 178-188 [in Russian].

26. Mamedova, A.O. (2009). Bioindication of environmental quality based on mutational and modification variability of plants. Cytology and genetics, 43, No. 2, pp. 61-64. https://doi.org/10.3103/S009545270902008X

27. Zablotska, L.B., Bazyka, D., Lubin, J.H., Gudzenko, N., Little, M.P., Hatch, M., Finch, S., Dyagil, I., Reiss, R.F., Chumak, V.V., Bouville, A., Drozdovitch, V., Kryuchkov, V.P., Golovanov, I., Bakhanova, E., Babkina, N., Lubarets, T., Bebeshko, V., Romanenko, A. & Mabuchi, K. (2013). Radiation and the risk of chronic lymphocytic and other leukemias Chornobyl cleanup workers. Environmental Hels Perspectives, 121, No. 1, pp. 59-65. https://doi.org/10.1289/ehp.1204996

28. Ivanov, V.K., Tsyb, A.F., Ivanov, S.V. & Pokrovsky, V.I. (2004). Medical radiological consequences of the chernobyl catastrophe in Russia estimation of radiation risks. St. Petersburg: Nauka.

29. Pflugbeil, S., Paulitz, H. & Schmitz-Feuerhake, I. (2011). Health effects of Chernobyl 25 years after the reactor catastrophe. Berlin: IPPNW and Gesellschaft fur Strahlenschutz.

30. Bebeshko, V., Bazyka, D., Loganovsky, K., Volovik, S. & Kovalenko, A. (2006, April): Does ionizing radiation accelerate the aging phenomena? Proceedings of the International Conference Twenty Years after Chernobyl Accident: Future Outlook (pp. 13-18), Kyiv.

31. Yablokov, A., Nesterenko, V. & Nesterenko, A. (2010). Chernobyl: consequences of the catastrophe for people and the environment. Boston: Blackwell.

32. Morgan, W.F. (2003). Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiationinduced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiation Research, No. 159, pp. 581-596. [0581:NADEOE]2.0.CO;2

33. Glazko, V.I. (2006). Chernobyl 20 years later. Nature, No. 5, pp. 48-53 [in Russian].

34. Gudkov, I.N. & Vinnichuk, M.M. (2003). Agricultural radiobiology. Zhitomir: Izdatelstvovo Gosudarstvennogo agroekologicheskogo un-ta [in Russian].

35. Fedotov, I.S., Kalchenko, V.A., Igonina, Y.V. & Rubanovich, A.V. (2006). Radiation-genetic consequences of exposure of Scots pine population in the Chernobyl accident zone. Radiatsionnaya biologiya. Radioekologiya, 46, No. 3, pp. 268-278 [in Russian].

36. Artyukhov, V.G., Kalayev, V.N. & Sadko, A.D. (2004). Influence of radioactive irradiation of mother trees of pedunculate oak (Quercus robur L.) on cytogenetic parameters of seed progeny (long-term effects). Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya Fiz.-mat., No. 1, pp. 121-128 [in Russian].

37. Gorova, A.I., Skvortsova, T.V., Klimkina, I.I., Pavlychenko, A.V. & Buchavyy, Y.V. (2005). Cytogenetic monitoring of the environment and human health. Visnyk Ukrayins'koho tovarystva henetykiv i selektsioneriv, 3, No. 1-2, pp. 36-47 [in Ukrainian].

38. Grodzinskiy, D.M., Kolomiyets, K.D., Kutlakhmedov, Y.A., Bulakh, A. & Dmitriyev, A.P. (1991). Anthropogenic radionuclide anomaly and plants. Kyiv: Lybid' [in Russian].

39. Kathiria, P. & Kovalchuk, I. (2010). Reporter gene-based recombination lines for studies of genome stability. Methods in Molecular Biology, No. 631, pp. 243-252. https://doi.org/10.1007/978-1-60761-646-7_18

40. Ramzaev, V., Botter-Jensen, L., Thomsen, K.J., Andersson, K.G. & Murray, A.S. (2008). An assessment of cumulative external doses from Chernobyl fallout for a forested area in Russia using the optically stimulated luminescence from quartz inclusions in bricks. Journal of Environmental Radioactivity, 99, No. 7, pp. 1154-1164. https://doi.org/10.1016/j.jenvrad.2008.01.014

41. Morgun, V.V. & Logvinenko, V.F. (1995). Wheat mutation breeding. Kiev: Naukova dumka [in Russian].

42. Yakymchuk, R. A. & Morhun, V. V. (2000). Genetic activity of low doses of physical and chemical mutagenic factors on winter wheat. Naukovyy visnyk Uzhhorodskoho derzhavnoho universytetu. Seriya biolohiya, No. 8, pp. 167-171 [in Ukrainian].

43. Morgun, V.V. & Yakymchuk, R.A. (2015). Mutagenic activity of radionuclide contamination in the near zone of the Chernobyl NPP in the long term after the accident. Fiziologiya rasteniy i genetika, 47, No. 6, pp. 463-473 [in Ukrainian].

44. Tsybulka, N.N., Chernysh, A.F., Tishchuk, L.A. & Zhukova, I.I. (2004). Horizontal migration of 137Cs during water erosion of soils. Radiatsionnaya biologiya. Radioekologiya, 44, No. 4, pp. 473-477 [in Russian].

45. Yakymchuk, R.A. (2018). Cytogenetic disorders in Triticum aestivum L. cells affected by radionuclide contamination of water reservoirs in the alienation zone of Chornobyl NPP. Biopolymers and Cell, 34, No. 2, pp. 97-106. https://doi.org/10.7124/bc.000974

46. Yakymchuk, R. A. (2017). Cytogenetic activity of radionuclide contamination of bottom sediments of reservoirs in the near exclusion zone of the Chernobyl NPP. Fiziologiya rasteniy i genetika, 49, No. 3, pp. 256-264 [in Ukrainian]. https://doi.org/10.15407/frg2017.03.256

47. Geraskin, S.A., Dikarev, V.G., Zyablitskaya, Y.Y., Oudalova, A.A., Spirin, Y.V. & Alexakhin, R.M. (2003). Genetic consequences of radioactive contamination by the Chernobyl fallout to agricultural crops. Journal of Environmental Radioactivity, 66, No. 1-2, pp. 155-169. https://doi.org/10.1016/S0265-931X(02)00121-2

48. Boubriak, I., Akimkina, T., Polischuk, V., Dmitriev, A., McCready, S. & Grodzinsky, D. (2016). Long term effects of Chernobyl contamination on DNA repair function and plant resistance to different biotic and abiotic stress factors. Cytology and Genetics, 50, No. 6, pp. 381-399. https://doi.org/10.3103/S0095452716060049

49. Sidorov, V.P. (1994). Cytogenetic effect in the cells of Scots pine needles during irradiation as a result of the Chernobyl accident. Radiatsionnaya biologiya. Radioekologiya, 34, No. 6, pp. 847-851 [in Russian].

50. Shkvarnikov, P.K. (1990). Cytological study of plants growing under the influence of different levels of radiation. Cytology and Genetics, 24, No. 5, pp. 33-37.

51. Vorobtsova, I.Y. (2006). Transgenerational transmission of radiation-induced genome instability. Radiatsionnaya biologiya. Radioekologiya, 46, No. 4, pp. 441-446 [in Russian].

52. Wickliffe, J.K., Chesser, R.K., Rodgers, B.E. & Baker, R.J. (2002). Assessing the genotoxicity of chronic environmental irradiation by using mitochondrial DNA heteroplasmy in the bank vole (Clethrionomys glareolus) at Chernobyl, Ukraine. Environmental Toxicology and Chemistry, 21, No. 6, pp. 1249-1254. https://doi.org/10.1002/etc.5620210619

53. Wickliffe, J.K., Rodgers, B.E., Chesser, R.K., Phillips, C.J., Gaschak, S.P. & Baker, R.J. (2003). Mitochondrial DNA heteroplasmy in laboratory mice exposed to the radioactive Chernobyl environment. Radiation Research, 159, No. 4, pp. 458-464. [0458: mdhilm]2.0.co;2 [0458:MDHILM]2.0.CO;2

54. Wiggins, L.E., Van Den Bussche, R.A., Hamilton, M.J., Chesser, R.K. & Baker, R.J. (2002). Utility of chromosomal position of heterochromatin as a biomarker of radiation-induced genetic damage: a study of Chernobyl voles (Microtus sp.). Ecotoxicology, No. 11, pp. 147-154. https://doi.org/10.1023/A:1015466530422

55. Gill, S.S., Anjum, N.A., Gill, R., Jha, M. & Tuteja, N. (2015). DNA damage and repair in plants under ultraviolet and ionizing radiations, Scientific World Journal, pp. 1-12. https://doi.org/10.1155/2015/250158

56. Kozubov, G. M. & Taskayev, A. I. (2002). Radiobiological studies of conifers in the area of the Chernobyl disaster. Moscow: IPTS «DIK» [in Russian].

57. Akleev, A.V. (2009). Tissue reactions to chronic exposure to ionizing radiation. Radiatsionnaya biologiya. Radioekologiya, 49, No. 1, pp. 5-20 [in Russian].