Fiziol. rast. genet. 2018, vol. 50, no. 1, 46-58, doi:


Yakymchuk R.A.

  • Unstitute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kyiv, 03022, Ukraine

An intensive mutative process, confirmed by numerous mutants of winter wheat, which were induced with radionuclide contamination, takes place in the Chornobyl exclusion zone. Singled out dwarf mutants are characterized by the lack of depressive processes as to major productivity elements. In crossing combinations of medium-height variety with dwarf mutant lines УК 1145/10, УК 1147/10 and УК 1148/10, received in the zone of Chornobyl NPP, in F1 hybrids such feature as stalk length is inherited by an intermediate type and partial positive domination. A significant distinction of F1 hybrid indices from parent forms was recorded for the majority of productivity elements. Dwarf forms were found in the populations of F2 plants of all crossing combinations, their part being 2.9—3.9 %. The appearance of high plants with frequency 2.2—3.6 %, which is neither typical for parent generation nor for F1 hybrids, can prove additive effect of the interaction of non-allele genes. Taking into account an intermediate nature of stalk length inheritance and the conservation of main indices of plant productivity elements in F1 hybrids at a level of better parent forms, crossing combinations with dwarf mutant УК 1147/10 may appear to be valuable in the breeding of soft winter wheat with short stalk.

Keywords: Triticum aestivum L., dwarf mutants, inheritance, stalk length, domination degree, crossing combinations

Fiziol. rast. genet.
2018, vol. 50, no. 1, 46-58

Full text and supplemented materials

Free full text: PDF  


1. Arbuzov, V.S., Efremova,T.T. & Martinek P. (2014). Variability of spike productivity signs in F2 hybrids obtained from crossing common wheat varieties Novosibirsk 67, Saratovskaya 29, Puza-4 with the multicolor Skle 123–09 line. Vavilovskiy zhurnal genetiki i selektsii, 18 (4/1), pp. 704-712 [in Russian].

2. BazalIy, V.V. (2004). Principles of adaptive selection of winter wheat in the Southern Steppe. Herson: Aylant [in Ukrainian].

3. Bakumenko, O.M. & Vlasenko, V.A. (2015). Heterosis and inheritance of a mass of 1000 seeds in F1 winter soft winter wheat. Avtohtonni ta introdukovanI roslini, Iss. 11, pp. 67-73 [in Ukrainian].

4. Boychuk, I.V. & BazalIy, V.V. (2015). Character of the manifestation of the elements of the productivity of the ear and their influence on the formation of the yield of soft winter wheat. Tavriyskiy naukoviy visnik, Iss. 94, pp. 3-8 [in Ukrainian].

5. Voloschuk, S.I. & Yurchenko, T.V. (2015). The variability of the sign of the length of the stem in the hybrid-mutant populations of soft winter wheat. Visnik agrarnoyi nauki, No. 5, pp. 36-40 [in Ukrainian].

6. Grabovets, A.I. & Fomenko, M.A. (2007). Winter wheat. Rostov-na-Donu: OOO «Izdatelstvo «Yug»», [in Russian].

7. Dorofeev, V.F. & Pushkina, G.A. (1974). Inheritance of plant height in hybridization of short stalk wheat varieties. Vestnik selskohozyaystvennoy nauki, No. 10, pp. 55-60 [in Russian].

8. Dospekhov, B.A. (1985). Field Experience Method (with the basics of statistical processing of research results). Moskow: Agropromizdat [in Russian].

9. Zhuchenko, A.A. (2004). Resource potential of grain production in Russia (theory and practice). Moskow: Agrorus [in Russian].

10. Zmievskaya, E.A. & Egorov, D.K. Inheritance of valuable traits in simple F1 rye winter hybrids. Selektsiya i nasinnitstvo, Iss. 108, pp. 92-98 [in Russian].

11. Kapko, T.N., Piskarev, V.V. & Boyko, N.I. (2016). The study of variability and inheritance of the length of the ear of soft spring wheat in the topcross crosses in the conditions of the forest-steppe of the Ob River. Dostizheniya nauki i tehniki. APK., 30 (5), pp. 43-46 [in Russian].

12. Korshunova, A.D., Divashuk, M.G. & Deabl, I.A.M.A. (2014, April). Studying the effect of short-stemming genes on the economically valuable traits of spring triticale. Materialyi XIV molodezhnoy nauchnoy konferentsii «Biotechnology in animal husbandry, crop production and veterinary" (pp. 53-54), Moskow [in Russian].

13. Lakin, G.F. (1980). Biometrics: A study guide for biol. specialist. universities. M.: Vyisshaya shkola [in Russian].

14. Lozinskiy, M.V. (2016). Inheritance of stem length and internodes of soft winter wheat in F1 and cleavage in F2 for hybridization of different ecotypes. Visnik Sumskogo Natsionalnogo agrarnogo universitetu, 32(9), pp. 186-191[in Ukrainian].

15. Luchna, I.S. (2013). Inheritance of the basic elements of productivity in winter wheat F1 hybrids in the process of creating a disease-resistant source material. Selektsiya i nasinnitstvo, Iss. 103,

16. Makarenko, N.M. (2008). Character of the inheritance of plant height with hybrid F1 soft winter wheat from the genotype and vegetation conditions. Zbirnik naukovih prats Institutu tsukrovih buryakiv UAAN, Iss. 10, pp. 143-147 [in Ukrainian].

17. Marchenko, D.M., Kostyilev, P.I. & Grichanikova, T.A. (2013). Types of inheritance plant height, spike length, the number and weight of grain from the ear in winter wheat F2 hybrids. Zernovoe hozyaystvo Rossii, No. 1, pp. 17-26 [in Russian].

18. Morgun, V.V. & Logvinenko, V.F. (1995). Mutational selection of wheat. Kyiv: Nauk. dumka [in Russian].

19. Morgun, V.V., Shvartau, V.V.& Kiriziy, D.A. (2008). Physiological bases for obtaining high wheat crops. Fiziologiya i biohimiya kulturnyih rasteniy, 40 (6), pp. 463-479 [in Ukrainian].

20. Morgun, V.V. & Yakimchuk, R.A. (2010). Genetic consequences of the Chernobyl accident. K.: Logos [in Ukrainian].

21. Muhordova, M.E. (2015). The concept of genetic determinants of mass of 1000 grains of soft winter wheat. Vestnik Novosibirskogo gosudarvstvennogo agrarnogo universiteta, 37(4), pp. 35-39 [in Russian]

22. Nekrasova, O.A. (2014). Types of plant height inheritance in F1 hybrids of soft winter wheat. Agrarian Bulletin of the Urals, 129 (11), pp. 12-15 [in Russian].

23. Omarov, D.S. (1975). To the method of accounting and evaluation of heterosis in plants. Agricultural Biology, 10(1), pp. 123-127 [in Russian].

24. Chebotar, G.A., Chebotar, S.V. & Motsnyiy, I.I. (2009). Molecular genetic analysis of analogous lines of soft wheat, differing in plant height. Visnik Odes. nats. un-tu. Biology, 14(8), pp. 61-71 [in Russian].

25. Chesnokov, Yu.V., Pochepnya, N.V. & Kozlenko, L.V. (2012). QTL mapping defining the manifestation of agronomically and economically valuable features in spring wheat (Triticum aestivum L.) in different ecological regions of Russia. Vavilov Journal of Genetics and Breeding, 16(4/2), pp. 970-986 [in Russian].

26. Shelepov, V.V., Gavrilyuk, N.N. & Vergunov, V.A. (2013). Wheat: biology, morphology, selection, seed production. Kiev: Logos [in Russian].

27. Al-ali, T.C., Rands, N.P. & Harberd, N.P. (2003). Flexible control of plant architecture and yield via swichable expression of Arabidopsis gai. Plant Biotechnol. J., 1, pp. 337-343.

28. Beil, G.M. & Atkins, R.E. (1965). Inheritance of quantitative characters in grain sorghum. Iowa State J. Sci., 39(3), pp. 345-348.

29. FAO. 2016. Food Outlook. Biannual report on global food markets. — 2016. — Suppl. http: //

30. Griffing, B. (1950). Analysis of quantitative gene-action by constant parent regression and related techniques. Genetics, 35, pp. 303-321.

31. Maluszynski, M. & Szarejko, I. (2005, May). Induced mutations in the green and gene revolution to the gene revolutions. Proceedings Intern. Cong. «In the wake of the double helix: from the green revolution to the gene revolution» . Bologna: Avenue media, pp. 403-425.

32. Marza, F., Bai, G.-H., Carver, B.F. & Zhou, W.-C. (2006). Quantitative trait loci for yield and related traits in the wheat population Ning7840 w Clark. Theor. Appl. Genet., 112, pp. 688-698.

33. McIntosh R.A., Yamasaki Y., Devos K.M. (2008). Suppl. http: //

34. Morris, R. (1974). Chromosomal locations of genes for wheat characters. Wheat Newslett., 20, pp. 20-44.

35. Pestsova, E.G., Borner, A. & Roder, M.S. (2006). Development and QTL assessment of Triticum aestivum–Aegilops tauschii introgression lines. Theor. Appl. Genet., 112, pp. 634-647.

36. Shewry, P.R. (2009). Wheat. J. Exp. Bot., 60(6), pp. 1537-1553.