The hydrogen sulfide donor sodium hydrosulfide (NaHS) influence on resistance of etiolated wheat (Triticum aestivum L.) seedlings to osmotic stress caused by 12 % PEG-6000 was investigated. Treatment with NaHS in concentrations 0.1, 0.5 and 1 mM reduced the growth inhibition of roods and shoots under the action of PEG and increased water content in seedlings. The most appreciable osmoprotective action of hydrogen sulfide donor was observed at 0.5 mM concentration. Under its influence at normal conditions and at osmotic stress there was activation of antioxidant enzymes namely catalase and guaiacol peroxidase, while activity of superoxide dismutase did not change significantly. Osmotic stress caused twofold increasing of proline content in shoots of seedlings, treatment with NaHS leaded to its more enhancing. Under the action of hydrogen sulfide donor the amount of anthocyanins in aboveground part of seedlings have risen at normal conditions and stabilized at stress ones. Seedlings treatment with NaHS leveled the oxidative stress caused by PEG, which evidenced in decreasing of hydrogen peroxide and malonic dialdehyde content in tissues. A conclusion was made that enhancing of resistance of wheat seedlings to osmotic stress, caused by H2S donor, related to activation of antioxidant and osmoprotective systems.
Keywords: Triticum aestivum L., hydrogen sulfide, osmotic stress, antioxidant enzymes, proline, anthocyanins
Full text and supplemented materials
Free full text: PDFReferences
1. Zagoskina, N.V., Olenichenko, N.A. & Nazarenko L.V. (2011). The effect of short-term action of hypothermia on the activity of antioxidant enzymes and the content of phenolic compounds in the leaves of seedlings of spring and winter wheat. Vіsnik Harkіvskogo natsіonalnogo unіversitetu. Biolohiia, 3(24), pp. 25-34 [in Russian].
2. Kolupaev, Yu.E. (2016). Antioxidants of the plant cell, their role in ROS signaling and plant resistance. Uspehi sovremennoy biologii., 136, No 2, pp. 181-198.
3. Morgun, V.V., Dubrovna, O.V. & Morgun, B.V. (2016). Modern biotechnologies for wheat-resistant plants. Fiziol. rast. genet., 48, No 3, pp. 196-214 [in Ukrainian].
4. Ostapchenko, L.I., Sinelnik, T.B. & Kompanets, I.V. (2016). Biological membranes and bases of intracellular signaling. Theoretical aspects. K.: VPTS «Kiyivskiy universitet» [in Ukrainian].
5. Shakirova, F.M. (2001). Nonspecific resistance of plants to stress factors and its regulation. Ufa: Gilem.
6. Bates, L.S., Walden, R.P. & Tear, G.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil., 39, pp. 205-210 [in Russian]. https://doi.org/10.1007/BF00018060
7. Chen, J., Shang, Y.T., Wang, W.H., Chen, X.Y., He, E.M., Zheng, H.L. & Shangguan, Z. (2016). Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings. Front. Plant Sci. 7: 1173. https://doi.org/10.3389/fpls.2016.01173
8. Es-Safi, N.E., Ghidouche, S. & Ducrot, P.H. (2007). Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Molecules, 12, pp. 2228-2258. https://doi.org/10.3390/12092228
9. Fazlieva, E.R., Kiseleva, I.S. & Zhuikova, T.V. (2012). Antioxidant activity in the leaves of Melilotus albus and Trifolium medium from man-made disturbed habitats in the Middle Urals under the influence of copper. Russ. Journal of Plant Physiology, 59, pp. 333-338. https://doi.org/10.1134/S1021443712030065
10. Fu, P.N., Wang, W.J., Hou, L.X. & Liu, X. (2013). Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. Acta Soc. Bot. Pol., 82, pp. 295-302. https://doi.org/10.5586/asbp.2013.031
11. Gadalla, M.M. & Snyder, S.H. (2010). Hydrogen sulfide as a gasotransmitter . J. Neurochem, 113, pp. 14-26. https://doi.org/10.1111/j.1471-4159.2010.06580.x
12. Hancock, J.T. & Whiteman, M. (2014). Hydrogen sulfide and cell signaling: Team player of feferee?. Plant Physiol. Biochem., 78, pp. 37-42. https://doi.org/10.1016/j.plaphy.2014.02.012
13. Islam, M.M., Hoque, M.A., Okuma, E., Banu, M.N., Shimoishi, Y., Nakamura, Y & Murata, Y. (2009). Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology, 166, pp. 1587-1597. https://doi.org/10.1016/j.jplph.2009.04.002
14. Jin, Z.P., Shen, J.J., Qiao, Z.J., Yang, G., Wang, R. & Pei, Y. (2011). Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun, 414, pp. 481- 486. https://doi.org/10.1016/j.bbrc.2011.09.090
15. Karpets, Yu.V., Kolypaev, Yu.E., Lugovaya, A.A. & Oboznyi, A.I. (2014). Effect of jasmonic acid on the pro-/antioxidant system of wheat coleoptiles as related to hyperthermia tolerance. Russian Journal of Plant Physiology, 61, pp. 339-346. https://doi.org/10.1134/S102144371402006X
16. Khlestkina, E.K. (2013). The adaptive role of flavonoids: emphasis on cereals // Cereal Res. Commun, 41, pp. 185—198. doi: https://doi.org/10.1556/CRC.2013.0004. https://doi.org/10.1556/CRC.2013.0004
17. Kolupaev, Yu.E., Firsova, E.N., Yastreb, T.O. & Lugovaya, A.A. (2017). The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. Applied Biochemistry Microboilogy, 53, pp. 573-579. https://doi.org/10.1134/S0003683817050088
18. Kolupaev, Yu.E., Karpets, Yu.V., Yastreb, T.O., Firsova, E.N. Protective effect of inhibitors of succinate dehydrogenase on wheat seedlings during osmotic stress // Ibid. — P. 353—358.
19. Lai, D.W., Mao, Y., Zhou, H., Li, F., Wu, M., Zhanq, J., He,Z., Cui, W. & Xie, Y. (2014). Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci., 225, pp. 117-129. https://doi.org/10.1016/j.plantsci.2014.06.006
20. Li, H., Li, M., Wei, X., Zhanq, X., Xue, R., Zhao, Y. & Zhao, H. (2017). Transcriptome analysis of drought responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol. Genet. Genomics. doi: https//doi:10.1007/s00438-017—1330—4. https://doi.org/10.1007/s00438-017-1330-4
21. Li, Q., Wang, Z., Zhao, Y., Zhanq, X., Zhanq, S., Bo, L., Wanq, Y., Dinq, Y. & An, L. (2016). Putrescine protects hulless barley from damage due to UV-B stress via H2S- and H2O2-mediated signaling pathways. Plant Cell Rep. doi: https//doi: 10.1007/s00299-016—1952—8. https://doi.org/10.1007/s00299-016-1952-8
22. Lisjak, M., Teklic, T., Wilson, I.D., Whiteman, M. & Hancock, J.T. (2013). Hydrogen sulfide: environmental factor or signalling molecule?. Plant Cell Environ, 36, pp. 1607-1616. https://doi.org/10.1111/pce.12073
23. Li, S.P., Hu, K.D., Hu, L.Y., Li, Y.H., Jianq, A.M., Xiao, F., Han, Y., Liu, Y.S. & Zhanq, H. (2014). Hydrogen sulfide alleviates postharvest senescence of broccoli by modulating antioxidant defense and senescencerelated gene expression. J. Agric. Food Chem., 62, pp. 1119-1129. https://doi.org/10.1021/jf4047122
24. Li, Z.G., Luo, L.J. & Sun, Y.F. (2015). Signal crosstalk between nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide induced thermotolerance in maize seedlings. Russian Journal of. Plant Physiology, 62, pp. 507-514. https://doi.org/10.1134/S1021443715030127
25. Li, Z.G. (2015). Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal. Behav. 10:9. — e1051278.
26. Li, Z.G., Yang, S.Z., Long, W.B., Yang, G.X & Shen, Z.Z. (2013). Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ, 36, pp. 1564-1572. https://doi.org/10.1111/pce.12092
27. Liu, J., Zhang, H., Yin, Y. & Chen, H. (2017). Effects of exogenous hydrogen sulfide on antioxidant metabolism of rice seed germinated under drought stress. Journal of Southern Agriculture. 48, pp. 31-37.
28. Ma, D., Ding, H., Wang, C., Qin, H., Han, Q., Hou, J., Lu, H., Xie, Y & Guo, T. (2017). Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS One.
29. Nogues, S.& Baker, N.R. (2000). Effects of drought on photosynthesis in Mediterranean plants grown under UV-B radiation. J. Exp. Bot., 51, pp. 1309-1317. https://doi.org/10.1093/jexbot/51.348.1309
30. Radyukina, N.L., Toaima, V.I.M. & Zaripova, N.R. (2012). The involvement of low-molecular antioxidants in cross-adaptation of medicine plants to successive action of UV-B radiation and salinity. Russian Journal of Plant Physiology, 59, pp. 71—78. https://doi.org/10.1134/S1021443712010165
31. Sagisaka, S. (1976). The occurrence of peroxide in a perrennial plant, Populus gelrica. Plant Physiology, 57, pp. 308-309. https://doi.org/10.1104/pp.57.2.308
32. Shan, C., Zhang, S. & Zhou, Y. (2017). Hydrogen sulfide is involved in the regulation of ascorbate-glutathione cycle by exogenous ABA in wheat seedling leaves under osmotic stress. Cereal Research. Communications, 45, pp. 411-420. doi: https//doi.org/10.1556/0806.45.2017.021. https://doi.org/10.1556/0806.45.2017.021
33. Tian, B., Qiao, Z., Zhang, L., Li, H. & Pei, Y. (2016). Hydrogen sulfide and proline cooperate to alleviate cadmium stress in foxtail millet seedlings. Plant Physiol. Biochem., 109, pp. 293-299. https://doi.org/10.1016/j.plaphy.2016.10.006
34. Yu, L., Zhang, C., Shang, H., Wang, X., Wei, M., Yang, F & Shi, Q. (2013). Exogenous hydrogen sulfide enhanced antioxidant capacity, amylase activities and salt tolerance of cucumber hypocotyls and radicles. Journal of Integrative Agriculture, 12, pp. 445-456. https://doi.org/10.1016/S2095-3119(13)60245-2
35. Zhang, H., Wang, M.J., Hu, L.Y., Wang, S.H., Hu, K.D., Bao, L. J & Luo, J.P. (2010). Hydrogen sulfide promotes wheat seed germination under osmotic stress. Russian Journal of Plant Physiology, 57, pp. 532-539. https://doi.org/10.1134/S1021443710040114