Fiziol. rast. genet. 2018, vol. 50, no. 6, 484-498, doi: https://doi.org/10.15407/frg2018.06.484

Malate dehydrogenase system of the green leaves of crops at manganese deficiency and manganese treatment

Yakuba I.P., Pauzer O.B.

  • I.I. Mechnikov Odesa National University 2 Shampanskiy prov., 65058, Odesa, Ukraine

Changes in the activity of malate dehydrogenases and malic-enzymes in the green leaves and the isoenzyme spectrum of malic-enzymes in different conditions of manganese nutrition of winter wheat, maize, peas, cucumber, tomatoes have been studied. For manganese fertilization pre-sowing seed treatment and leaf spraying of plants with a solution of manganese sulfate at a concentration of 0.05 and 0.10 % were used. The content of manganese in plant tissues was determined by the method of atomic absorption spectrophotometry. The activity of the malate dehydrogenase system enzymes was determined in the homogenates of the leaves. It was shown that under experimental conditions, in a variant with a deficit of manganese, the amount of this element was reduced by 5—10 times compared with the control, and in variants with manganese fertilization — increased by 1.5—2 times. Accordingly, the manganese deficit decreased sugars, sucrose, protein and chlorophyll contents, while manganese fertilization increased those parameters. The influence of the level of manganese nutrition of plant on the activity of NAD and NADP-dependent malate dehydrogenases and NAD and NADP of malic-enzyme activities, as well as on the isozyme spectrum of NAD and NADP malic enzymes was studied In the stressful conditions of manganese deficit in C3 plants, the activity of malic-enzyme decreased by 5—7 times, in corn — by 2 times. Treatment with manganese caused an increase in the enzyme activity by 5—20 %. The conducted electrophoretic studies allowed to establish that the level of manganese nutrition significantly affects the isoenzyme spectrum of malic-enzyme. Obtained results indicate the possibility of using of changes in the activity of malate dehydrogenase system enzymes, in particular NADP-ME, for diagnostics of the manganese supply in plants.

Keywords: manganese, agricultural plant, treatment, deficiency, malatedehydrogenase

Fiziol. rast. genet.
2018, vol. 50, no. 6, 484-498

Full text and supplemented materials

Free full text: PDF  

References

1. Pin'yeyru da Kaval'ye, M.A.A., Zemlyanukhin, A.A. & Yeprintsev, A.T. (1991). Malatdegidrogenaza vysshikh rasteniy. Voronezh: Izd-vo Voronezh. gos. un-ta [in Russian].

2. Ivanishcheva, V.V. & Kurganov, V.I. (1992). Fermenty metabolizma malata: kharakteristika, regulyatsiya aktivnosti i biologicheskaya rol'. Biokhimiya, 57, 5, pp. 653-662 [in Russian].

3. Martinoia, E. & Renstch, D. (1994). Malate compartmentation: responses to a complex metabolism. Annu. Rev. Plant Phisiol. Plant Mol. Biol., 45, pp. 447-467. https://doi.org/10.1146/annurev.pp.45.060194.002311

4. Musrati, r. A., Kollбrova, M., Mernik, N. & Mikulбљovб, D. (1998). Malate dehydrogenase: distribution, function and properties. Gen. Physiol. Biophys, 17, pp. 193-210.

5. Allen, M.D., Kropat, J., Tottey,S., Del Campo, J.A., & Merchant, S.S. (2007). Manganese deficiency in chlamidomonas results in loss of Photosystem II and MnSOD function, sensitivity of peroxides, and secondary phosphorus and iron deficiency. Plant Physiology, 143, pp. 263-277. https://doi.org/10.1104/pp.106.088609

6. Tesfaye, M., Temple, S.J., Allan, D.L., Vance, C.P. & Samac, D.A. (2001). Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol, 127, pp. 1836-1844. https://doi.org/10.1104/pp.010376

7. Yudina, R.S. (2012) Malate dehydrogenase in plants: Its genetics, structure, localization and use as a marker. Advances in Bioscience and Biotechnology, 3, pp. 370-377. https://doi.org/10.4236/abb.2012.34053

8. Drinkovich, M.F., Casati, P. & Andreo, C.S. (2001). NADP-malic enzyme from plants: a unibquitous enzyme involved in different metabolic pathways. FEBS Lett., 490, 1-2, pp. 1-6. https://doi.org/10.1016/S0014-5793(00)02331-0

9. Kh'yuitt, E. (1960). Peschanyye i vodnyye kul'tury v izuchenii pitaniya rasteniy. Moskva: Izd-vo inostr. lit. [in Russian].

10. Dospekhov, B.A. (1980). Metodika polevogo opyta (s osnovami statisticheskoy obrabotki rezul'tatov issledovaniy). 3-ye izd., pererab. i dop. Moskva: Kolos [in Russian].

11. RD 52.10.556-95 (1996). Rukovodyashchiy dokument. Metodicheskiye ukazaniya. Opredeleniye zagryaznyayushchikh veshchestv v probakh morskikh donnykh otlozheniy i vzvesi. Moskva: Federal'naya sluzhba Rossii po gidrometeorologiy i monitoringa okruzhayushchey sredy [in Russian].

12. Magomedov, I.M. & Tishchenko, I.I. (1978). Metodika issledovaniya glavnykh fermentov S4 fotosinteza. Trudy po prikladnoy genetike, botanike i selektsii, 61, iss. 3, pp. 105-110 [in Russian].

13. Yermakov, A.I., Arasimovich, V.V. & Yarosh, N.P. (Eds.) (1989). Metody biokhimicheskogo issledovaniya rasteniy. Leningrad: Agropromizdat [in Russian].

14. Belyayeva, D.K. (red.) (1977). Genetika izofermentov. Moskva: Nauka [in Russian].

15. Yakuba, I.P. & Pauzer, O.B. (2009). Margantsevoye pitaniya rasteniy i puti yego uluchsheniya. Fiziologiya rasteniy: problemy i perspektivy razvitiya: F50 v 2 t. NAN Ukrainy, In-t fiziologii rasteniy i genetiki, Ukr. t-vo fiziologov rasteniy; glav. red. V.V.Morgun. Kiyev: Logos, Vol.1. pp. 306-318 [in Ukrainian].

16. Rudakova, E.V., Karakisa, K.D. & Sidorshina, T.N. (1987). Mikroelementy: postupleniye, transport i fiziologicheskiye funktsii v rasteniyakh. Kyiv: Nauk. dumka [in Russian].

17. Ascher-Ellis, J.S., Graham, R.D., Hollamby, G.J., Paul, J., Davies, P., Huang, C., Pallotta, M.A., Howes, N., Khabaz-Saberi, H., Jefferies, S.P., & Moussavi-Nik, M. (2001). Micronutrients. Application of Physiology in wheat breeding. Mexico D.F.:CIMMYT, pp. 219-240.

18. Graham, R.D. & Stangoulis, C.R. (2003). Trace element uptake and distribution in plants. Amer. Soc. Nutr. Sci., 133, 5, pp. 1502-1505.

19. Lai, L.B., Wang, L. & Nelson, T.M. (2002) Distinct but conserved functions for two chloroplastic NADP-malic enzyme isoforms in C3 and C4 Flaveria species. Plant Physiol., 128, pp. 125-139. https://doi.org/10.1104/pp.010448

20. McGonigle, B. & Nelson, T. (1995). C4 isoform of NADP-malate dehydrogenase (cDNA cloning and expression in leaves of C4, C3 and C3-C4 intermediate species of Flaveria). Plant Phisiol., 108, 3, pp.1119-1126. https://doi.org/10.1104/pp.108.3.1119

21. Etienne, C., Moing, A., Dirlewander, E., Raymond, P., Monet, R. & Rotham, C. (2002). Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit activity. Physiologia Plantarum, 114, 2, pp. 259-270. https://doi.org/10.1034/j.1399-3054.2002.1140212.x