Fiziol. rast. genet. 2018, vol. 50, no. 3, 263-274, doi:


Prysiazhniuk L.M.1, Borodai V.V.2, Marchuk O.O.1, Zakharchuk N.A.3

  1. Ukrainian Institute for Plant Variety Examination 15 Henerala Rodimtseva St., Kyiv, 03041, Ukraine
  2. National University of Life and Environmental Sciences of Ukraine 15 Heroiv Oborony St., Kyiv, 03041, Ukraine
  3. Institute for Potato Research of National Academy of Agrarian Sciences of Ukraine 22 Chkalova St., Nemishaieve, Borodianka district, Kyiv region, 07853, Ukraine

The results of the allelic state of microcatellite loci of potato varieties of Ukrainian breeding for the four SSR markers STM0019, STM3009, STM3012, STM 5136 are presented. It was established that the use of SSR markers is an effective method for evaluating the intrinsic diversity of potatoes and identifying their differences. For the purpose of genetic distances evaluating polymerase chain reaction (PCR) was performed on defined SSR markers. According to the size of the alleles, their frequencies and the polymorphic index of the locus (PIC) were calculated. According to the marker, 5 to 20 alleles in the varieties were identified. For the STM0019 marker an allele size of 98—258 bp was defined, for the STM3009 — 164—172 bp, STM3012 — 175—224 bp, STM5136 — 240—267 bp. The frequency of identified alleles was 0.08—0.33. According to the received distribution, the highest frequency for the most polymorphic marker STM0019 was revealed for 124 bp allele, that was identified in four varieties: Okolytsia, Dovira, Yavir, Skarbnitsa. The polymorphic information content of the locus (PIC) was 0.63—0.88, which indicates a sufficiently high ability of the marker system to differentiate the potato varieties. A cluster analysis was conducted to determine the similarity and diversity of varieties. Grouping into clusters of investigated genotypes was carried out using an unweighted pair group average method. According to the genetic distances for the SSR markers, the studied varieties were grouped into three clusters: Polisske dzherelo and Chervona ruta, Yavir and Skarbnitsa, Lileya and Slavyanka. It was determined that the most similar varieties were Yavir and Skarbnitsa. Also marked the most distant varieties — Fantazia, Levada. The variety Okolytsia was not included in any of the formed clusters, which may be explained by its origin, and hence a set of features that determine the direction of its use.

Keywords: Solanum tuberosum L., SSR-markers, alleles frequency, genetic distances, varieties differentiation

Fiziol. rast. genet.
2018, vol. 50, no. 3, 263-274

Full text and supplemented materials

Free full text: PDF  


1. Antonova, O. Ju., & Gavrilenko, T.A. (2006). Polymorphism of organellar DNA sequences of potato species. Genetika populjacij i jevoljucija, 4, No. 1, pp. 2-10 [in Russian].

2. Drozdov, V.I. (2010). Instruction on the use of the package Statistica 6.0. Kursk: Jugo-Zapadnyj gos. un-t [in Russian].

3. Ermantraut, E.R., Prisjazhnjuk, O.I. & Shevchenko, I.L. (2007). Statistical analysis of agronomic research data in the STATICTICA 6.0. package. Kyiv: Poligraf Konsalting [in Ukrainian].

4. Zavirjuha, P. & Lishhins'ka, N. (2013). Study of the source material for the selection of potatoes on a complex of valuable economic features. Visnik L'vivs'kogo nacional'nogo agrarnogo universitetu. Ser: Agronomija, 17, No. 2, pp. 220-232 [in Ukrainian].

5. Kalendar', R.N. & Glazko, V.I. (2002). Types of molecular genetic markers and their application. Fiziologiya i biokhimiya kult. rastenii, 34, No. 4, pp. 279-296 [in Russian].

6. DSTU 4506:2005. Potatoes food. Growing technology. Main provisions. Kyiv: Derzhspozhyvstandart Ukraine, 2006 [in Ukrainian].

7. Kiru, S.D. (2008). Genetic resources of potatoes for new breeding directions. In Scientific provision and innovative development of potato growing. Proceeding VNIIKH (pp. 80-84). Moscow [in Russian].

8. Koltunov, V.A., Sonec', T.D., Borodaj, V.V. & Vojceshina, N.I. (2016). Estimation of competitiveness and resource potential of potato asssortment in Ukraine. Ovochivnictvo i bashtannictvo: mizhvid. tematich. nauk. zb., 62, pp. 123-136 [in Ukrainian].

9. Koltunov, V.A., Vojceshina, N.I. & Furdiga, M.M. (2014). Resource potential of a potato variety: a monograph. Kyiv: KNTEU [in Ukrainian].

10. Metodika provedennja kvalifikacijnoї ekspertizi sortiv roslin na pridatnist' do poshirennja v Ukraini (2016). Methods of determining the quality indices of crop production. Approved by the Order of the Ministry of Agrarian Policy and Food of Ukraine from 12th December 2016, pp. 540 [in Ukrainian].

11. Morgun, B.V., Stepanenko, O.V., Stepanenko, A.I. & Rybalka, O.I. (2015). Molecular genetic identification of Wx gene polymorphism in soft wheat hybrids with multiplex polymerase chain reactions. Fiziol. rast. genet., 47, No. 1, pp. 25-35 [in Ukrainian].

12. Olijnik, T.M., Slobodjan, S.O. & Gricaj, R.V. (2012). Application of microsatellite potato markers for phylogenetic analysis of varieties of domestic and foreign breeding. Kartopljarstvo, 41, pp. 41-48 [in Ukrainian].

13. Prisjazhnjuk, L.M., Mel'nik, S.I. Shitikova, Ju.V., Sigalova, I.O. & Ivanic'ka, A.P. (2017). Use of SSR markers for the differentiation of new soybean varieties (Glycine max (L.) Merr.). Sortovichennja ta ohorona prav na sorty roslin, No. 3, pp. 269-276 [in Ukrainian].

14. Sivolap, Ju.M. & Kozhuhova, N.E. (2005). DNA technology in the registration and protection of plant variety rights. Sortovyvchennja ta ohorona prav na sorty roslyn, 1, pp. 66-74 [in Ukrainian].

15. Almeida Rocha, E., Vilela Paiva, L., Henrique de Carvalho, H. & Teixeira Guimaraes, C. (2010). Molecular characterization and genetic diversity of potato cultivars using SSR and RAPD markers. Crop Breed. and Appl. Biotechnol., 10, pp. 204-210.

16. Chung, Y.S., Palta, J.P., Bamberg, J. & Jansky S.H. (2016). Potential molecular markers associated with tuber calcium content in wild potato germplasm. Crop Science, 56, No. 2, pp. 576-584.

17. Cote, M.-J., Leduc, L. & Reid, A. (2013). Evaluation of Simple Sequence Repeat (SSR) Markers Established in Europe as a Method for the Identification of Potato Varieties Grown in Canada. Amer. J. Potato Res., 90, pp. 340-350. doi: https://doi 10.1007/s12230-013-9310-7.

18. Everitt, B.S. (2011). Cluster Analysis (5th ed.) / S. Landau, M. Leese, D. Stahl. Chichester: Wiley.

19. Ghebreslassie, B.M., Palta, J.P., Bamberg, J. & Jansky, S.H. (2016). Genetic diversity assessment of farmers' and improved potato (Solanum tuberosum) cultivars from Eritrea using simple sequence repeat (SSR) markers. African J. of Biotechnol., 15, No. 35, pp. 1883-1891.

20. Ghislain, M., Nunez, J., Herrera, M.R., Pignataro, J., Guzman, F., Bonierbale, M. & Spooner, D.M. (2009). Robust and highly informative microsatellite-based genetic identity kit for potato. Mol. Breeding, 23, pp. 377-388. doi: https://doi: 10.1007/s11032-008-9240-0.

21. Grover, A. & Sharma, P.C. (2016). Development and use of molecular markers: past and present. Critical reviews in biotechnology, 36, No. 2, pp. 290-302.

22. Jun, T.-H., Michel, A.P. & Mian, M.A. (2011). Development of soybean aphid genomic SSR markers using next generation sequencing. Genome, 54, pp. 360-367.

23. Kuhl, J.C., Novy, R.G., Whitworth, J.L., Dibble, M., Schneider, B.L. & Hall, D.G. (2016). Development of molecular markers closely linked to the Potato leafroll virus resistance gene, Rlretb, for use in marker-assisted selection. Amer. J. of Potato Res., 93, No. 3, pp. 203-212.

24. Liao, H. & Guo, H. (2014). Using SSR to evaluate the genetic diversity of potato cultivars from Yunnan province (SW China). Acta Biologica Cracoviensia. Series Botanica, No. 56/1, pp. 16-27. doi: https://doi: 10.2478/abcsb-2014-0003.

25. Muhinyuza, J.B., (2015). Assessment of genetic relationship of promising potato genotypes grown in Rwanda using SSR markers. Austral. J. Crop Sci., 9, No. 8, p. 696.

26. Mulato, B.M., Moller, M., Zucchi, M.I., Quecini, V. & Pinheiro, J.B. (2010). Genetic diversity in soybean germplasm identified by SSR and EST-SSR markers. Pesq. Agropec. Bras., 45, No. 3, pp. 276-283.

27. Namorato, H., Miranda, G.V., de Souza, L.V., Oliveira, L.R., DeLima, R.O. & Mantovani, Eder E. (2009). Comparing biplot multivariate analyses with Eberhartand Russel' method for genotype w environment interaction crop. Breed. and Appl. Biotechnol., No. 9, pp. 299-307.

28. Nie, X., Sutherland, D., Dickison, V.L., Singh, M., Murphy, A.M. & De Koeyer, D.L. (2016). Development and Validation of High-Resolution Melting Markers Derived from Ry sto STS Markers for High-Throughput Marker-Assisted Selection of Potato Carrying Ry sto. Phytopathology, 106, No. 11, pp. 1366-1375.

29. Ramakrishnan, A.P., Ritland, C.E., Sevillano, R.H.B. & Riseman, A. (2015). Review of potato molecular markers to enhance trait selection. Amer. J.of Potato Res., 92, No. 4, pp. 455-472.

30. Reid, A., Hof, L., Felix, G., Rucker, B., Tams, S., Milczynska, E., Esselink, D., Uenk, G., Vosman, B. & Weitz, A. (2011). Construction of an integrated microsatellite and key morphological characteristic database of potato varieties on the EU common catalogue. Euphytica, 182, pp. 239-249.

31. Reid, A., Hof, L., Esselink, D. & Vosman, B. (2009). Potato cultivar genome analysis. Methods in Mol. Biol., Plant Pathol., 508, pp. 295-308.

32. Schцnhals, E.M., Ortega, F., Barandalla, L., Aragones, A., Ruiz de Galarreta, J.I., Liao, J.-C., Sanetomo, R., Walkemeier, B., Tacke, E., Ritter, E. & Gebhardt, C. (2016). Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.). Theor. Appl. Genet., 129, No. 4, pp. 767-785.

33. Spooner, D.M., Ruess, H., Arbizu, C.I., Rodriguez, F. & Solis-Lemus, C. (2018). Greatly reduced phylogenetic structure in the cultivated potato clade (Solanum section Petota pro parte). Amer. J. of Bot., 105, No. 1, pp. 60-70.

34. Tierno, R. & Ignacio Ruiz de Galarreta, J. (2015). Characterization of high anthocyanin producing tetraploid potato cultivars selected for breeding using morphological traits and microsatellite markers. Plant Genetic Resources: Characterization and Utilization, pp. 1-10. doi: https://doi: 10.1017/S1479262115000477.