Fiziol. rast. genet. 2018, vol. 50, no. 2, 124-133, doi:


Subin O.V.1, Melnychuk M.D.2, Likhanov A.F.3, Spyrydonov V.G.4

  1. National University of Life and Environmental Sciences of Ukraine 15 Heroiv oborony St., , Kyiv, 03041, Ukraine
  2. Agronomica LTD 28 Lobanovskogo St., v. Chaiky, Kyiv-Sviatoshyn distr. Kyiv region, 08130, Ukraine
  3. Institute for evolutionary ecology, national academy of sciences of Ukraine 37 Acad. Lebedeva St., Kyiv, 03143, Ukraine
  4. Institute of Veterinary Medicine, National Academy of Agrarian Sciences of Ukraine 30 Donetska St., Kyiv, 03151, Ukraine

Plants are subjected to an enormous number of biotic and abiotic environmental stresses during their life cycle. The responses to different stresses are very complex and include changes at the transcriptome, cellular, and physiological levels. The recognition of inductors and signaling molecules is one of the ways of inducting the plant’s own defense mechanisms. The response reactions of Fragaria ananassa Duch. plants treated with chitosan of different origins and molecular weight were studied in our experiment. The plants exhibited highly reactive physiological responses. Chitosan with low molecular weight (ChI) caused intensification of phenylpropanoid synthesis, tannins formation and changed daily dynamics of secondary metabolism. Within twelve hours after treatment with ChI preparation, total phenolic and antioxidant amounts in leaves increased by 1.9 and 3.2 times respectively. Unlike ChI, the solution of high molecular weight chitosan (ChII) induced in leaves a sharp decrease of free and loosely-bound with cell walls phenolic compounds. We observed differences of plant primary response reactions to chitosan treatment. They depend on the origin of chitosan, its molecular weight and degree of deacetylation.

Keywords: Duch., chitosan, leaves, phenols, elicitors, antioxidants

Fiziol. rast. genet.
2018, vol. 50, no. 2, 124-133

Full text and supplemented materials

Free full text: PDF  


1. Agrawal, G., Rakwal, R., Tamogami, S., Yonekura, M., Kubo, A. & Saji, H. (2002). Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiology and Biochemistry, 40(12), pp. 1061—1069.

2. Appel, H. (1993). Phenolics in ecological interactions: The importance of oxidation. J. Chemical Ecol., 19(7), pp. 1521—1552.

3. Atkinson, N. & Urwin, P. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot., 63(10), pp. 3523—3543.

4. Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C. & Fallik, E. (2003). Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Protection, 22(2), 285—290. doi:

5. Brand-Williams, W., Cuvelier, M. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT — Food Sci. Technol., 28(1), pp. 25—30. doi:

6. Brine, C., Sandford, P. & Zikakis, J. (1992). Advances in chitin and chitosan. Elsevier Applied Science.

7. Dixon, R., Achnine, L., Kota, P., Liu, C., Reddy, M. & Wang, L. (2002). The phenylpropanoid pathway and plant defence — a genomics perspective. Mol. Plant Pathol., 3(5), pp. 371—390. doi:

8. El Ghaouth, A., Arul, J., Wilson, C. & Benhamou, N. (1997). Biochemical and cytochemical aspects of the interactions of chitosan and Botrytis cinerea in bell pepper fruit. Postharvest Biol. Technol., 12(2), pp. 183—194. doi:

9. Garcia-Garrido, J. & Ocampo, J. (2002). Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J. Exp. Bot., 53(373), pp. 1377—1386. doi:

10. Katiyar, D., Hemantaranjan, A., Singh, B. & Bhanu, A. (2014). A future perspective in crop protection: Chitosan and its Oligosaccharides. Advances In Plants & Agriculture Research, 1, pp. 1—8.

11. Knorr, D., Beaumont, M. & Pandya, Y. (1989). Potential of acid soluble and water soluble chitosan in biotechnology. In G. Skjak-Braek, T. Anthonsen & P. Sanford (Eds) Chitin and chitosan (pp. 101—118). London, New York: Elsevier Appl. Sci.

12. La Camera, S., Gouzerh, G., Dhondt, S., Hoffmann, L., Fritig, B., Legrand, M. & Heitz, T. (2004). Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol. Reviews, 198(1), pp. 267—284. doi: 10.1111/j.0105-2896.2004.0129.x.

13. Moilanen, J., Sinkkonen, J. & Salminen, J. (2013). Characterization of bioactive plant ellagitannins by chromatographic, spectroscopic and mass spectrometric methods. Chemoecology, 23(3), pp. 165—179. doi:

14. Naik, P. & Al-Khayri, J. (2016). Abiotic and biotic elicitors — role in secondary metabolites production through in vitro culture of medicinal plants. In A. Shanker & C. Shanker (Eds) Abiotic and Biotic Stress in Plants — Recent Advances and Future Perspectives (pp. 247—277). InTech. doi:

15. Ozeretskovskaya, O., Vasyukova, N. & Zinovieva, S. (2002). Chitosan as an elicitor of induced plant resistance. In G. Skryabin, G. Vikhoreva & V. Varlamov (Eds) Chitin and chitosan production, propeties and usage (pp. 280—360). Moscow: Nauka.

16. Prasad, S. & Ellis, B. (1978). In vivo characterization of catechol ring-cleavage in cell cultures of Glycine max. Phytochemistry, 17(2), pp. 187—190. doi:

17. Rane, K. & Hoover, D. (1993). Production of chitosan by fungi. Food Biotechnol., 7(1), pp. 11—33. doi:

18. Salminen, J. & Karonen, M. (2011). Chemical ecology of tannins and other phenolics: we need a change in approach. Functional Ecol., 25(2), pp. 325—338. doi: j.1365-2435.2010.01826.x.

19. Shibuya, N. & Minami, E. (2001). Oligosaccharide signalling for defence responses in plant. Physiological Mol. Plant Pathol., 59(5), pp. 223—233. doi:

20. Singleton, V. & Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdicphoungstic acid reagent. Am. J. Enol. Vitic., 16, pp. 144—158.

21. Sokolov, Y. (2014). Elicitors and their application. Proceedings of The National Academy of Sciences of Belarus: Chemical Series, 4, pp. 109—118.

22. Somssich, I. & Hahlbrock, K. (1998). Pathogen defence in plants — a paradigm of biological complexity. Trends In Plant Science, 3(3), pp. 86—90. doi:

23. Teng, W., Khor, E., Tan, T., Lim, L. & Tan, S. (2001). Concurrent production of chitin from shrimp shells and fungi. Carbohydrate Research, 332(3), pp. 305—316. doi: s0008-6215(01)00084-2.

24. Thakur, M. & Sohal, B. (2013). Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochemistry, 2013, pp. 1—10. doi: 762412.

25. Van Loon, L. & Van Strien, E. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol., 55(2), pp. 85—97. doi:

26. Vogt, T. (2010). Phenylpropanoid biosynthesis. Mol. Plant, 3(1), pp. 2—20. doi: 10.1093/mp/ssp106.

27. White, S., Farina, P. & Fulton, I. (1979). Production and isolation of chitosan from Mucor rouxii. Appl. Environ. Microbiol., 38(2), pp. 323—328.