Fiziol. rast. genet. 2017, vol. 49, no. 1, 71-81, doi: https://doi.org/10.15407/frg2017.01.071

Activity of antioxidant enzymes in leaves of barley plants of various genotypes under influence of soil drought and sodium nitroprusside

Karpets Yu.V., Kolupaev Yu.E., Yastreb T.O., Lugova G.A.

  • V.V. Dokuchaev Kharkiv National Agrarian University Township Dokuchaevske, Kharkiv, 62483, Ukraine

The influence of treatment with the donor of nitric oxide sogium nitroprusside (SNP) on the activity of antioxidant enzymes, chlorophyll content in leaves and growth of plants of three varieties of barley (Hordeum vulgare L.) — Gelioc (low drought-resistant), Kozak (moderately drought-resistant) and Monomakh (high drought-resistant) — have been investigated. 6-day influence of drought (decrease of soil humidity to 25—30 % of WC) led to the oppression of accumulation of plants biomass and lowering of chlorophyll content. More considerably negative influence of drought on plants biomass was registered in varieties Gelios and Kozak. The drought-resistant variety Monomakh differed in the higher constitutive activity of antioxidant enzymes — catalases (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX). Under the influence of drought in variety Gelios the activity of all three studied antioxidant enzymes decreased; in variety Kozak the reduction of GPX activity was registered, the activity of other enzymes changed insignificantly; at the same time in variety Monomakh under the drought conditions the high activity of indicated antioxidant enzymes remained. The treatment of plants with SNP under normal humifying caused the essential increase of CAT activity and small increase of APX activity in all three varieties, but weakly influenced on GPX activity. Pretreatment with the NO donor removed the negative influence of drought on the activity of antioxidant enzymes; most considerably this effect was shown in plants of low drought-resistant variety Gelios. Under the influence of donor of nitric oxide in the drought conditions the growth of plants increased and the chlorophyll content remained close to control. The role of enzymatic antioxidative system in plants drought resistance and the value of nitric oxide in regulation of activity of antioxidant enzymes are discussed.

Keywords: Hordeum vulgare L., drought, nitric oxide, antioxidant enzymes, resistance

Fiziol. rast. genet.
2017, vol. 49, no. 1, 71-81

Full text and supplemented materials

Free full text: PDF  

References

1. Karpets, Yu.V., Kolupaev, Yu.E. & Vayner, A.A. (2015). Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance, Russ. J. Plant Physiol., 62, No. 1, pp. 65-70. https://doi.org/10.1134/S1021443714060090

2. Karpets, Yu.V., Kolupaev, Yu.E., Grigorenko, D.O. & Firsova, K.M. (2016). Response of barley plants of various genotypes to soil drought and influence of nitric oxide donor. Visn. Hark. nac. agrar. univ., Ser. Biol., 2 (38), pp. 94-105 [in Russian].

3. Karpets, Yu.V., Kolupaev, Yu.E. & Yastreb, T.O. (2011). Effect of sodium nitroprusside on heat resistance of wheat coleoptiles: dependence on the formation and scavenging of reactive oxygen species. Russ. J. Plant Physiol., 58, pp. 1027-1034. https://doi.org/10.1134/S1021443711060094

4. Kiriziy, D.A., Shadchina, T.M., Stasik, O.O., Priadkina, H.O., Sokolovska-Serhiienko, O.H., Huliaiev, B.I. & Sytnyk, S.K. (2011). Peculiarities of photosynthesis and production process in high intensity genotypes of winter wheat. Kyiv: Osnova [in Ukrainian].

5. Kolupaev, Yu.E. (2016). Plant cell antioxidants and their role in ROS signaling and plant resistance. Uspekhi Sovrem. Biologii, 136 (2), pp. 181-198 [in Russian].

6. Pavlovskaya, N.E. & Grinblat, A.I. (2010). Active forms of oxygen and apoptosis in wheat and pea. Sel'skokhozyaistvennaya Biologiya, No. 1, pp. 51-55 [in Russian].

7. Filippovich, Yu.V., Egorova, T.A. & Sevast'yanova, G.A. (1982). Handbook for General Biochemistry. Moscow: Prosveshchenie [in Russian].

8. Shlyk, A.A. (1971). Determining chlorophylls and carotenoids in extracts of green leaves. In Biokhimicheskie metody v fiziologii rastenii. Pavlinova, O.A., Ed. Moscow: Nauka, pp. 154-170 [in Russian].

9. Begara-Morales, J.C., Chaki, M., Sanchez-Calvo, B., Mata-Pérez, C., Leterrier, M., Palma, J.M., Barroso, J.B. & Corpas, F.J. (2013). Protein tyrosine nitration in pea roots during development and senescence. J. Exp. Bot., 64, pp. 1121-1142. https://doi.org/10.1093/jxb/ert006

10. Chaki, M., Valderrama, R., Fernandez-Ocana, A.M., Carreras, A., Lopez-Jaramillo, J., Luque, F., Palma, J.M., Pedrajas, J.R., Begara-Morales, J.C., Sanchez-Calvo, B., Gomez-Rodríguez, M.V., Corpas, F.J. & Barroso, J.B. (2009). Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J. Exp. Bot., 60, pp. 4221-4234. https://doi.org/10.1093/jxb/erp263

11. Chen, Z., Zhang, L. & Zhu, C. (2015). Exogenous nitric oxide mediates alleviation of mercury toxicity by promoting auxin transport in roots or preventing oxidative stress in leaves of rice seedlings. Acta Physiol. Plant., 37, p. 194. https://doi.org/10.1007/s11738-015-1931-7

12. Fan, X.W., Li, F.M., Song, L., Xiong, Y.C., An, L.Z., Jia, Y. & Fang, X.W. (2009). Defense strategy of old and modern spring wheat varieties during soil drying. Physiol. Plant., 136, pp. 310-323. https://doi.org/10.1111/j.1399-3054.2009.01225.x

13. Fares, A., Rossignol, M. & Peltier, J.B. (2011). Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochem. Biophys. Res. Commun., 416, pp. 331-338. https://doi.org/10.1016/j.bbrc.2011.11.036

14. Foyer, C.H. & Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid. Redox. Signal., 11, pp. 861-906. https://doi.org/10.1089/ars.2008.2177

15. Foyer, C.H. & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol., 155, pp. 93-100. https://doi.org/10.1104/pp.110.166181

16. Gill, S.S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 48, pp. 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016

17. Gupta, K.J. & Igamberdiev, A.U. (2015). Compartmentalization of reactive oxygen species and nitric oxide production in plant cells: An overview. In: Gupta, K.J., Igamberdiev, A.U. (Eds.). Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants, Signaling and Communication in Plants. Heidelberg; New York; Dordrecht; London: Springer, pp. 1-14. https://doi.org/10.1007/978-3-319-10079-1_1

18. Khan, M.N., Mobin, M. & Abbas, Z.K. 2015. Nitric oxide and high temperature stress: a physiological perspective. In: Khan M.N. et. al. (Eds.) Nitric oxide action in abiotic stress responses in plants. Heidelberg; New York; Dordrecht; London: Springer, pp. 77-94. https://doi.org/10.1007/978-3-319-17804-2_5

19. Lopez-Carrion, A.I., Castellano, R., Rosales, M.A., Ruiz, J.M. & Romero, L. (2008). Role of nitric oxide under saline stress: implications on proline metabolism. Biol. Plant., 52, pp. 587-591. https://doi.org/10.1007/s10535-008-0117-1

20. Lozano-Juste, J. & Leon, J. (2011). Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis. Plant Physiol., 156, pp. 1410-1423. https://doi.org/10.1104/pp.111.177741

21. Lu, D., Zhang, X., Jiang, J., An, G.Y., Zhang, L.R. & Song, C.P. (2005). NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba L. J. Plant Physiol. Mol. Biol. (Zhi wu sheng li yu fen zi sheng wu xue xue bao), 31, pp. 62-70 [in Chinese].

22. Mehlhorn, H., Lelandais, M., Korth, H.G. & Foyer, C.H. (1996). Ascorbate is the natural substrate for plant peroxidases. FEBS Lett., 378, pp. 203-206. https://doi.org/10.1016/0014-5793(95)01448-9

23. Naeem, M.K., Ahmad, M. & Kamran, M. (2015). Physiological responses of wheat (Triticum aestivum L.) to drought stress. Int. J. Plant Soil Sci., 6 (1), pp. 1-9. https://doi.org/10.9734/IJPSS/2015/9587

24. Nakano, Y. & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22, pp. 867-880. doi: org/10.1093/oxfordjournals.pcp.a076232

25. Nyathi, Y. & Baker, A. (2006). Plant peroxisomes as a source of signalling molecules. Biochim. Biophys. Acta., 1763, pp. 1478-1495. https://doi.org/10.1016/j.bbamcr.2006.08.031

26. Ridge, I. & Osborne, D.J. (1970). Hydroxyproline and peroxidases in cell walls of Pisum sativum: regulation by ethylene. J. Exp. Bot., 21, pp. 843-856. https://doi.org/10.1093/jxb/21.4.843

27. Sgherri, C.L., Pinzincp, C. & Navari-Izzo, F. (1996). Sunflower seedlings subjected to increasing stress by water deficit: changes in O2-production related to the composition of thylakoid membranes. Physiol. Plant., 96, pp. 446-452. https://doi.org/10.1111/j.1399-3054.1996.tb00457.x

28. Shi, H., Ye, T., Zhu, J.K. & Chan, Z. (2014). Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. J. Exp. Bot., 65, pp. 4119-4131. https://doi.org/10.1093/jxb/eru184

29. Sidana, S., Bose, J., Shabala, L. & Shabala, S. (2015). Nitric oxide in drought stress signalling and tolerance in plants. In: Khan, M.N. et al. (Eds.) Nitric oxide action in abiotic stress responses in plants. Heidelberg; New York; Dordrecht; London: Springer, pp. 95-114. https://doi.org/10.1007/978-3-319-17804-2_6

30. Siddiqui, M.H., Al-Whaibi, M.H. & Basalah, M.O. (2011). Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 248, pp. 447-455. https://doi.org/10.1007/s00709-010-0206-9

31. Simaei, M., Khavari-Nejad, R.A., Saadatmand, S., Bernard, F. & Fahimi, H. (2011). Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accumulation in Glycine max L. treated with NaCl salinity. Afr. J. Agricult. Res., 6, pp. 3775-3782. doi: 10.5897/AJAR10.1088

32. Tan, J., Zhao, H., Hong, J., Han, Y., Li, H. & Zhao, W. (2008). Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. World J. Agricult. Sci., 4, pp. 307-313.

33. Tognolli, M., Penel, C., Greppin, H. & Simon, P. (2002). Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene, 288, pp. 129-138. https://doi.org/10.1016/S0378-1119(02)00465-1

34. Uchida, A., Jagendorf, A.T., Hibino, T., Takabe, T. & Takabe, T. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci., 163, pp. 515-523. https://doi.org/10.1016/S0168-9452(02)00159-0

35. Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X. & Tan, M. (2007). Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol., 175, pp. 36-50. https://doi.org/10.1111/j.1469-8137.2007.02071.x

36. Zhang, Y., Wang, L., Liu ,Y. Zhang, Q., Wei, Q. & Zhang, W. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta, 224, pp. 545-555. https://doi.org/10.1007/s00425-006-0242-z