Fiziol. rast. genet. 2017, vol. 49, no. 6, 463-481, doi:


Kolupaev Yu.E., Karpets Yu.V.

  • V.V. Dokuchaev Kharkiv National Agrarian University Township Dokuchaevske-2, Kharkiv, 62483, Ukraine
  • V.N. Karazin Kharkiv National University 4, Svoboda Square, Kharkiv, 61022, Ukraine

Mechanisms of regulation of state of plants antioxidative system (AOS) with participation of signal mediators (hydrogen peroxide, calcium ions, nitric oxide, hydrogen sulphide) are considered. It is noted that influence of reactive oxygen species (ROS) on AOS can be both the result of oxidative modification of proteins, participating in the transduction of cellular signals, and the consequence of their damage of individual components of AOS, that finally leads to the formation of ROS signal and to the change in the expression of genes involved in the antioxidative defense. Nitric oxide, depending on the nature of oxidative modification, can cause directly both increase, and decrease of activity of antioxidant enzymes. On the other hand, under the influence of NO the components of signalling network, participating in the regulation of gene expression of antioxidant enzymes, are activated. Direct modification of functional groups of proteins (sulphur-containing, metal-containing) can be also the basis of influence of hydrogen sulphide on the components of AOS. At the same time the influence of H2S on activity of antioxidant enzymes depends on other components of signalling network. Key signal mediators (ROS, nitric oxide, calcium ions) participate in the processes of induction of AOS by phytohormones (jasmonic and salicylic acids, brassinosteroids).

Keywords: antioxidative system, signal mediators, reactive oxygen species, nitric oxide, calcium, hydrogen sulphide, stress phytohormones

Fiziol. rast. genet.
2017, vol. 49, no. 6, 463-481

Full text and supplemented materials

Free full text: PDF  


1. Karpets, Yu.V., Kolupaev, Yu.E. & Kosakovskaya, I.V. (2016). Nitric oxide and hydrogen peroxide as signal intermediaries when inducing the heat resistance of wheat seedlings by exogenous jasmonic and salicylic acids. Fisiol. rast. genet., 48(2), pp. 158-166 [in Russian].

2. Karpets, Yu.V., Kolupaev,Yu.E., Lugovaya, A.A. & Oboznyiy, A.I. (2014). Influence of exogenous jasmonic acid on the pro-/antioxidant system of wheat coleoptiles in connection with resistance to hyperthermia. Fiziol. rast., 61(3), pp. 367-375 [in Russian].

3. Karpets, Yu.V. & Kolupaev,Yu.E. (2017). Functional interaction of nitric oxide with reactive oxygen species and calcium ions during the formation of adaptive reactions of plants. Vіsnyk Harkіvskogo natsіonalnogo unіversitetu. Biolohiia, Iss. 2 (41), pp. 6-31 [in Russian].

4. Karpets, Yu.V. (2017). The role of calcium ions and reactive oxygen species in inducing antioxidant enzymes and heat resistance of plant cells by the nitric oxide donor. Vіsnyk Harkіvskogo natsіonalnogo unіversitetu. Biolohiia, Iss. 3 (42), pp. 52-61 [in Russian].

5. Kolupaev, Yu.E., Akinina, G.E. & Mokrousov, A.V. (2005).Induction of heat resistance of wheat coleoptiles with calcium ions and its relation to oxidative stress. Fiziol. rast., 52(2), pp. 227-232 [in Russian].

6. Kolupaev, Yu.E. (2016). Antioxidants of the plant cell, their role in ROS signaling and plant resistance. Uspehi sovremennoy biologii, 136(2), pp. 181-198 [in Russian].

7. Kolupaev, Yu.E., Vayner, A.A. & Yastreb, T.O. (2014). Reactive oxygen species and calcium ions in the implementation of the stress-protective effect of brassinosteroids on plant cells. Prikl. biokhimiya i mikrobiologiya, 50(6), pp. 593-598, pp. 593-598 [in Russian].

8. Kolupaev,Yu.E. & Karpets, Yu.V. (2014). Reactive oxygen species and calcium ions in the implementation of the stress-protective effect of brassinosteroids on plant cells. Ukr. Biochem. J., 86(4), pp. 18-35[in Russian].

9. Kolupaev,Yu.E., Karpets, Yu.V. & Oboznyiy, A.I. (2011). Antioxidant system of plants: participation in cell signaling and adaptation to the action of stressors. Vіsnyk Harkіvskogo natsіonalnogo unіversitetu. Biologiya. Iss. 1(22), pp. 6-34 [in Russian].

10. Kolupaev,Yu.E. & Karpets, Yu.V. (2010). Formation of adaptive responses of plants to the action of abiotic stressors. Kiev: Osnova [in Russian].

11. Kolupaev, Yu.E., Firsova, E.N., Yastreb, T.O. & Lugovaya, A.A. (2017). Involvement of calcium ions and reactive oxygen species in inducing antioxidant enzymes and heat resistance of plant cells by hydrogen sulfide donor. Prikl. biokhimiya i mikrobiologiya, 53(5), pp. 502-509 [in Russian].

13. Kolupaev, Yu.E., Yastreb, T.O., Shvydenko, N.V.& Karpets, Yu.V. (2012). Induction of heat resistance of wheat coleoptiles by salicylic and succinic acids: the connection of effects with the formation and neutralization of reactive oxygen species. Prikl. biokhimiya i mikrobiologiya, 48(5), pp. 550-556 [in Russian].

14. Kreslavskiy, V.D., Los, D.A., Allahverdyev, S.I. & Kuznetsov, Vl.V. (2012). Signaling role of reactive oxygen species under stress in plants. Fiziol. rast., 59(2), pp. 163-178 [in Russian].

15. Maksimov, I.V., Sorokan, A.V. & Cherepanova, E.A. (2011). Effect of salicylic and jasmonic acids on the components of the pro / antioxidant system in potato plants during blight. Fiziol. rast., 58(4), pp. 243-251 [in Russian].

16. Ostapchenko, L.I., Sinelnik, T.B. & Kompanets, I.V. (2016). Biological membranes and bases of intracellular signaling. Theoretical aspects. K.: VPTS "Kiyivskiy universytet" [in Ukrainian].

17. Pradedova, E.V., Isheeva, O.D. & Salyaev, R.K. (2011). Classification of the antioxidant defense system as the basis for a rational organization of the experimental study of oxidative stress in plants. Fiziol. rast., 58(2)., pp. 177-185 [in Russian].

18. Pradedova, E.V., Nimaeva, O.D. & Salyaev, R.K. (2017). Redox processes in biological systems. Fiziol. rast., 64(6)., pp. 433-455 [in Russian].

19. Radyukina, N.L., Toayma, V.I.M. & Zarypova, N.R. (2012). The participation of low molecular weight antioxidants in the cross-adaptation of medicinal plants to the sequential action of UV-B irradiation and salinization. Fiziol. rast., 59(1)., pp. 80-88 [in Russian].

20. Cherenkevich, S.N., Martynovych, G.G. & Martynovych, I.V. (2013). Redox regulation of cellular activity: concepts and mechanisms. Vestsi NAN Belarusi. Biyalogiya, No. 1, pp. 92-108 [in Russian].

21. Chzhan, Sh., Van, M.I. & Hu, L.Ya. (2010). Hydrogen sulfide stimulates the germination of wheat seeds under osmotic stress. Fiziol. rast., 57(4)., pp. 571-579 [in Russian].

22. Yastreb, T.O., Kolupaev, Yu.E., Lugovaya, A.A. & Dmitriev, A.P. (2016). The content of osmolytes and flavonoids in plants of Arabidopsis thaliana, defective in jasmonate signaling, under salt stress. Prikl. biokhimiya i mikrobiologiya, 52(2), pp. 223-229 [in Russian].

23. Yastreb, T.O., Kolupaev, Yu.E. & Shvidenko, N.V. (2015). Reaction of Arabidopsis thaliana plants defective in jasmonate signaling to salt stress. Prikl. biokhimiya i mikrobiologiya, 51(4), pp. 412-416 [in Russian].

24. Alavi, S.M.N., Arvin, M.J. & Kalantari, K.M. (2014). Salicylic acid and nitric oxide alleviate osmotic stress in wheat (Triticum aestivum L.) seedlings. J.Plant Interact., 9, pp. 683-688.

25. Arora, D. & Bhatla, S.C. (2015). Nitric oxide triggers a concentration-dependent differential modulation of superoxide dismutase (FeSOD and Cu/ZnSOD) activity in sunflower seedling roots and cotyledons as an early and long. Plant Signal. Behav.

26. Arora, D., Jain, P., Singh, N., Kaur, H. & Bhatla, S.C. (2015). Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants. Free Radical Res.

27. Astier, J. & Lindermayr, C. (2012). Nitric oxide-dependent posttranslational modification in plants: an update. Int. J. Mol. Sci., 13, pp. 15193-15208.

28. Bai, X., Yang, L., Tian, M., Chen, J., Shi, J., Yang, Y. & Hu, X. (2011). Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS One, 6(6): e20714.

29. Bajguz, A (2010). An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environmental and Experimental Botany, 68, pp.175—179.

30. Bechtold, U., Richard, O., Zamboni, A. & Gapper, C. (2008). Impact of chloroplastic — and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. Journal of Experimental Botany, 59, pp. 121-133.

31. Beltran, B., Orsi, A., Clementi, E. & Moncada, S. (2000). Oxidative stress and S-nitrosylation of proteins in cells. Braz. J. Pharmacol, 129, pp. 953-960.

32. Brown, G.C. (1995). Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett, 369, 136-139.

33. Chaki, M., Valderrama, R., Fernandez-Ocana, A.M., Carreras, A., Gomes-Rodriges, M.V., Pedraias, J.R., Begara – Morales, J.S., Sanches-Calvo, B., Lugue, F., Leterrier, M., Corpas, F.J. & Barroso, J.P. (2011).Mechanical wounding induces a nitrosative stress by downregulation of GSNO reductase and a rise of S-nitrosothiols in sunflower (Helianthus annuus) seedlings. Journal of Experimental Botany, 62, pp. 1803-1813.

34. Cheng, W., Zhang, L., Jiao, C., Su, M., Yang, T., Zhou, L., Peng, R., Wang, R. & Wang, C. (2013). Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiol. Biochem., 70, pp. 278-286.

35. Christou, A., Filippou, P., Manganaris, G. & Fotopoulos, V. (2014). Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biology, 14: 42. doi:10.1186/1471-2229-14-42

36. Christou, A., Manganaris, G.A., Papadopoulos, I. & Fotopoulos, V. (2013). Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defense pathways. Journal of Experimental Botany, 64, pp. 1953-1966.

37. Clarke A., Desikan R., Hurst, R.D., Hancock, J.T. & Neill, S.V. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J., 24, pp. 667-677.

38. Cooper, C.E. (1999). Nitric oxide and iron proteins. Biochem. Biophys. Acta., 1411, pp. 290-309.

39. Cvetkovska, M. & Vanlerberghe, G.C. (2013). Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant Cell Environ., 36, pp. 721-732.

40. Del Rio, L.A., Sandalio, L.M. & Corpas, F.J. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol., 141, pp. 330-335.

41. Dietz, K.J. (2014).Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal, 21, pp.1356-1373.

42. Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M. & Kazan. (2007). MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell, 19, pp. 2225-2245.

43. Esim, N. & Atici, O. (2015). Effects of exogenous nitric oxide and salicylic acid on chilling-induced oxidative stress in wheat (Triticum aestivum). Frontiers in Life Science, 8, pp. 124-130.

44. Fariduddin, Q., Khalil, R.R.A.E., Mir, B.A., Yusuf, M. & Ahmad, A. (2013). 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ. Monit. Assess., 185, pp.7845-7856.

45. Ford, P.C. (2010). Reactions of NO and nitrite with heme models and proteins. Inorg. Chem,49, pp. 6226-6239.

46. Foyer, C.H. & Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal, 11, pp. 861-906.

47. Foyer, C.H. & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology,155, pp. 93-100.

48. Freschi, L. (2013). Nitric oxide and phytohormone interactions: current status and perspectives. Front. Plant Sci., 4, 398.

49. Fu, P.N., Wang, W.J., Hou, L.X. & Liu, X. (2013). Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. Acta Societatis Botanicorum Poloniae, 82, pp. 295-302.

50. Gautam, V., Kaur, R. & Kohli, S.K. (2017). ROS Compartmentalization in plant cells under abiotic stress condition. In: Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer Nature Singapore Pte Ltd., pp. 89-114.

51. Gill, S.S. & Tuteja, N.(2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, pp. 909-930.

52. Guajardo, E., Juan, A.C. & Contreras-Porcia, L. (2016). Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta, 243, pp.767-781.

53. Guo J., Pang Q., Wang L. & Yu, P. (2012). Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana. Proteome Science, 10, pp. 1-13.

54. Hancock, J.T. (2017). Harnessing evolutionary toxins for signaling: reactive oxygen species, nitric oxide and hydrogen sulfide in plant cell regulation. Front. Plant Sci, 8, 189.

55. Huang, S. & Millar, A.H. (2013). Succinate dehydrogenase: the complex roles of a simple enzyme. Curr. Opin. Plant Biol., 16, pp. 344-349.

56. Hu, X., Jiang, M., Zhang, J., Zhang, A., Lin, F. & Tan, M. (2007). Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytologist, 173, pp. 27-38.

57. Jeandroz, S., Lamotte, O., Astier, J., Rasul, S., Trapet, P., Besson-Bard, A., Bourgue, S., Nicolas-Frances, V., Ma, W., Berkowitz, G.A. & Wendehenne, D. (2013). (There's more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. Plant Physiology,163, pp. 459-470.

58. Kaur, N. & Gupta, A.K. (2005). Signal transduction pathways under abiotic stresses in plant. Curr. Sci., 88, pp.1771-1780.

59. Kawano, T., Sahashi, N., Takahashi, K., Uozumi, N. & Muto, S. (1998). Salicylic acid induces extracellular superoxide generation followed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol., 39, pp. 721-730.

60. Keramat, B., Kalantari, K.M. & Arvin, M.J. (2009). Effects of methyl jasmonate in regulating cadmium induced oxidative stress in soybean plant (Glycine max L.). African Journal of Microbiology Research, 3, pp. 240-244.

61. Klessig D.F., Durner J., Noad R. & Navarre, R. (2000). Nitric oxide and salicylic acid signalling in plant defense . Proceedings of the National Academy of Sciences, 97, pp. 8849-8855.

62. Knight, H., Trewavas, A.J. & Knight, M.R. (1997). Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J., 12, pp. 1067-1078.

63. Kolupaev, Yu.Ye., Karpets, Yu.V. & Kosakivska, I.V. (2008). The importance of reactive oxygen species in the induction of plant resistance to heat stress. Gen. Appl. Plant Physiol., 34(3,4), pp. 251-266.

64. Lai, D.W., Mao, Y., Zhou, H., Li, F., Wu, M., Zhang, G., He, Z., Cui, W. & Xie, Y. (2014). Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci., 225, pp. 117-129.

65. Liang, W., Wang, M. & Ai, X. (2009). The role of calcium in regulating photosynthesis and related physiological indexes of cucumber seedlings under low light intensity and suboptimal temperature stress. Sci. Hort., 123, pp. 34-38.

66. Lisjak M., Teklic T., Wilson, I.D., Whiteman, M. & Hancock, J.T. (2013). Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environment, 36, pp. 1607-1616.

67. Li T., Jia, K.P., Lian H.L., Yang, X., Li, L. & Yang, H.Q. (2014) Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem. Biophys. Res. Commun., 454, pp. 78-83.

68. Liu, Y., Hao, Y., Liu, Y. & Huang, W. (2005). Effects of wounding and exogenous jasmonic acid on the peroxidation of membrane lipid in pea seedlings leaves. Agricult. Sci. China., 4, pp.614-620.

69. Li, Y.H., Liu, Y.J., Xu, X.L., Jin, M., An, L.Z. & Zhang, H. (2012). Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biologia Plantarum, 56, pp. 192-196.

70. Li, Z.G., Yi, X.Y. & Li, Y.T. (2014). Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings. Biologia, 69, pp. 1001-1009.

71. Lozano-Juste, J., Colom-Moreno, R. & Leon, J. (2011). In vivo protein tyrosine nitration in Arabidopsis thaliana. Journal of Experimental Botany, 62, pp. 3501 -3517.

72. Ma, C., Wang, Z.Q., Zhang, L.T., Sun, M.M. & Lin, T.B. (2014). Photosynthetic responses of wheat (Triticum aestivum L.) to combined effects of drought and exogenous methyl jasmonate. Photosynthetica, 52, pp. 377-385.

73. Mika, A., Boenisch, M.J., Hopff, D. & Luthje, S. (2010). Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors. Journal of Experimental Botany, 61, pp. 831-841.

74. Minibayeva F., Kolesnikov O., Chasov A., Beckett, R.P., Luthje, S., Vylegzhanina, N., Buck, F. & Bottger, M. (2009).Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species. Plant Cell Environ., 32, pp. 497-508.

75. Mostofa, M.G., Fujita, M. & Tran, L.S.P. (2015). Nitric oxide mediates hydrogen peroxide- and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings. Plant Grow. Regul., 77, pp. 265-277.

76. Mur, L.A.J., Kenton, P., Atzorn, R., Miersch, O. & Wasternack, C. (2006). The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology, 140, pp. 249-262.

77. Mur, L.A.J., Prats, E. & Pierre, S. (2013). Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front. Plant Sci., 4: 215. doi: 10.3389/fpls.2013.00215.

78. Ndamukong, I., Al Abdallat, A., Thurow, C., Fode, B., Zander, M., Weigel, R. & Gatz, C. (2007). SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA responsive PDF1.2 transcription. Plant J., 50, pp.128-139.

79. Noctor, G., Mhamdi, A. & Foyer, C.H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology, 164, pp. 1636-1648.

80. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamogoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M. & Kushitsu, K. (2008). Synergistic activation of the Arabidopsis NADPH oxidase Atrboh D by Ca2+ and phosphorylation. J. Biol. Chem., 283, pp. 8885-8892.

81. Ogweno, J.O., Song, X.S., Shi K., Hu, H.W., Mao, W.H., Zhou, Y.H. & Yu, J.Q. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, pp. 49-57.

82. Ozdemir, F., Bor, M., Demiral, T. & Turkan, I. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation, 42, pp. 203-211.

83. Paciolla, C., Paradiso, A. & de Pinto, M.C. (2016). Cellular redox homeostasis as central modulator in plant stress response. Redox State as a Central Regulator of Plant-Cell Stress Responses. Eds. D.K. Gupta et al. Springer International Publishing Switzerland, pp. 1-23.

84. Parida, A.K. & Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicol. and Environ. Safety., 60, pp. 324-349.

85. Popova, L.P., Maslenkova, L.T., Yordanova, R.Y., Ivanova, A.P., Krantev, A.P., Szalai, G. & Janda, T. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol. Biochem., 47, pp. 224-231.

86. Radi, R. (2004). Nitric oxide, oxidants, and protein tyrosine nitration. Proc. Natl. Acad. Sci., 101, pp. 4003-4008.

87. Rao M.V., Paliyaht G., Ormrod D.P., Murr, D.P. & Watkins, C.B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes (salicylic acid-mediated oxidative damage requires H2O2). Plant Physiol., 115, pp. 137-149.

88. Rentel, M.C. & Knight, M.R. (2004). Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol., 135, pp. 1471-1479.

89. Sagi, M. & Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol., 141, pp. 336-340.

90. Shana, C. & Liang, Z. (2010). Jasmonicacid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci., 178, pp. 130-139.

91. Sharma, I., Pati, P.K. & Bhardwaj, R. (2011). Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L. Acta Physiol. Plant., 33, pp. 1723-1735.

92. Shi, H., Ye T. & Chan, Z. (2013). Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L.). Pers.). Plant Physiol. Biochem., 71, pp. 226-234.

93. Shi, H., Ye, T. & Chan, Z. (2014). Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol. Biochem., 74, pp. 99-107.

94. Siddiqui, M.H., Al-Whaibi, M.H. & Ali, H.M. (2013). Mitigation of nickel stress by the exogenous application of salicylic acid and nitric oxide in wheat. Australian Journal of Crop Science, 7, pp. 1780-1788.

95. Singh, H.P., Batish, D.R., Kaur, G. & Arora, K. (2008). Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environmental and Experimental Botany, 63, pp.158-167.

96. Slathia, S., Sharma, A. & Choudhary, S.P. (2012). Influence of exogenously applied epibrassinolide and putrescine on protein content, antioxidant enzymes and lipid peroxidation in Lycopersicon esculentum under salinity stress. American Journal of Plant Sciences, 3, pp. 714-720.

97. Suzuki, N. & Mittler, R. (2006). Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum, 126, pp. 45-51.

98. Swamy K.N., Anuradha S., Ramakrishna B. (2011). Cadmium toxicity is diminished by 24-epibrassinolide in seedlings of Trigonella foenum-graecum L. Gen. Plant Physiol., 1, No. 3-4, pp. 163-175.

99. Talaat, N.B. & Shawky, B.T. (2013). 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum, 35, pp. 729-740.

100.Tuteja, N. & Sopory, S.K. (2008). Chemical signaling under abiotic stress environment in plants. Plant Signal Behav, 3, pp. 525-536.

101. Vardhini, B.V., Sujatha, E.S. & Rao, S.R. (2012). Brassinosteroids on the oxidizing and hydrolyzing enzymes of radish plants. J. Phytol., 4, pp. 1-4.

102. Vranova, E., Inze, D. & Breusegem, F. (2002). Signal transduction during oxidative stress. Journal of Experimental Botany, 53, 1227-1236.

103. Wang, H., Feng, T., Peng, X., Yan, M. & Tang, X. (2009). Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicology and Environmental Safety, 72, pp.1354-1362.

104. Wang, L.J. & Li, S.H. (2006). Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci., 170, pp. 685-694.

105. Wang, Y., Li, L. & Cui, W. (2012). Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil, 351, pp. 107-119.

106. Wendehenne, D., Durner, J., Chen, Z. & Klessig, D.F. (1998). Benzothiadiazole, an inducer of plant defenses, inhibits catalase and ascorbate peroxidase. Phytochemistry, 47, pp. 651-657.

107. Xia, X.J., Wang ,Y.J., Zhou, Y.H., Tao, Y., Mao, W.H., Shi, K., Asami, T., Chen, Z. & Yu, J.Q. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol., 150, pp. 801-814.

108. Xu, L.L., Fan, Z.Y. & Dong, Y.J. (2015). Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of two peanut cultivars under cadmium stress. Biologia Plantarum, 59, pp. 171-182.

109. Yan, F., Liu, Y. & Sheng, H. (2016). Salicylic acid and nitric oxide increase photosynthesis and antioxidant defense in wheat under UV-B stress. Biologia Plantarum, 60, pp. 686-694.

110. Yang, T. & Poovaiah, B.W. (2002). Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc. Natl. Acad. Sci. USA., 99, pp. 4097-4102.

111. Yoshimura, K., Yabuta, Yu., Ishikawa, T. & Shigeoka, S. (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol., 123, pp. 223-233.

112. Yoshioka, H., Sugie, K., Park, H.J., Maeda, H., Tsuda, N., Kawakita, K. & Doke, N. (2001). Induction of plant gp91 phonx homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol. Plant-Microbe. Interact., 14, pp. 725-736.

113. Zhang, A., Jiang, M., Zhang, J., Ding, H., Xu, S., Hu, X. & Tan, M. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol., 175, pp. 36-50.

114. Zhang, H., Ye, Y.K., Wang, S.H. (2009). Hydrogen sulfide counteracts chlorophyll loss in sweet potato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Grow. Regul., 58, pp. 243-250.

115. Zhong-Guang, L. & Ming, G. (2011). Mechanical stimulation-induced cross-adaptation in plants: An overview. J. Plant Biol., 54, pp. 358-364.