Fiziol. rast. genet. 2017, vol. 49, no. 4, 328-338, doi: https://doi.org/10.15407/frg2017.04.328

COMPLEX MOLECULAR-GENETIC EVALUATION OF SPRING BARLEY GENE POOL BY USE DIRECTIONSCOMPLEX MOLECULAR-GENETIC EVALUATION OF SPRING BARLEY GENE POOL BY USE DIRECTIONS

Stepanenko O.V., Muzafarova V.A., Stepanenko A.І., Kuzminskiy Ye.V., Ryabchun V.K., Morgun B.V.

  • Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Academika Zabolotnoho St., Kyiv, 03143, Ukraine
  • National Technical University «Igor Sikorsky Kyiv Polytechnic Institute» 37 Prosp. Peremohy, Kyiv, 03056, Ukraine
  • V. Ya. Yuryev Рlant Production Institute, National Academy of Agricultural Sciences of Ukraine 142 Moskovsky ave., Kharkiv, 61060, Ukraine
  • Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine 31/17 Vasylkivska St., Kiev, 03022, Ukraine

Among the 26 collectible varieties and lines of spring barley, samples valuable for various directions of using in the complex of agronomic and biochemical features were discovered. In addition, the allelic state of the Bmy1 gene that determines the activity and thermal stability of b-amylase, Lox-1, which determines the synthesis of lipoxygenase-1, Itr1, responsible for the presence or absence of CMe protein and Wax, which encodes the key enzyme for the amylose synthesis of starch endosperm, is characterized.

Keywords: spring barley, molecular markers, Bmy1 gene, Lox-1 gene, Itr1 gene, Wax gene

Fiziol. rast. genet.
2017, vol. 49, no. 4, 328-338

Full text and supplemented materials

Free full text: PDF  

References

1. Dospekhov, B.A. (1985). Field Experience Method. Moskow: Agropromizdat [in Russian].

2.The international classifier of the CMEA of the genus Hordeum L. (1983). Leningrad [in Russian].

3. Guidelines for the diagnosis and methods of field assessment of the resistance of barley to pathogens of leaf spot. (1987). Lenyngrad-Pushkin [in Russian].

4. Kobyilyanskiy, V.D. (Ed.) (1981). Guidelines for the study of the world collection of barley and oats. Leningrad [in Russian].

5. Methods of breeding and assessing the resistance of wheat and barley to diseases in the CMEA member countries (1988). Praga [in Russian].

6. Naumov, O.G., Kozachenko, M.R. & Vasko, N.I. (2014). Selection of Waxy Barley. Selektsiya i nasinnytstvo, 105, pp. 60-69 [in Ukrainian].

7. Stepanenko, A.I., Morgun, B.V. & Stepanenko, O.V. (2014). Distribution of alleles of the HvITR1 gene encoding the trypsin SME inhibitor (WHI-SME) and colloidal stability of beer among barley varieties registered in Ukraine. Biotechnol. Acta., 7 (6), pp. 75-82 [in Ukrainian]. https://doi.org/10.15407/biotech7.06.075

8. Stepanenko, O.V., Morgun, B.V. & Rybalka, O.I. (2014). Detection of allelic variants of the Wax gene among domestic and foreign barley varieties. Nauk. visti NTUU "KPI", No. 3(95), pp. 78-83 [in Ukrainian].

9. Stratula, O.R. & Sivolap, Yu.M. (2007). Alley characteristics of the b-amylase gene of barley varieties of Ukraine. Cytologiya i genetika, 41 (4), pp. 20-25 [in Russian].

10. Shaverskiy, A.A., Stepanenko, A.I. & Zholner, L.G. (2014). Investigation of allele polymorphism of bmy1 and lox-1 barley genes associated with brewer's grain characteristics. Nauk. visti NTUU "KPI", No. 3 (95), pp. 88-94 [in Ukrainian].

11. Brody, J.R. & Kern, S.E. (2004). History and principles of conductive media for standard DNA electrophoresis. Anal. Biochem., 333, pp. 1-13. https://doi.org/10.1016/j.ab.2004.05.054

12. Domon, E. (2002). The insertion/deletion polymorphisms in the waxy gene of barley genetic resources from East Asia .Theor. Appl. Genet., 104, pp. 132-138. https://doi.org/10.1007/s001220200016

13. Erkkila, M.J. (1999). Intron III specific markers for screening of b-amylase alleles in barley cultivars. Plant Mol. Biol. Rep., 17, pp. 139-147. https://doi.org/10.1023/A:1007595821379

14. Erkkila, M.J., Leah, R., Ahokas, H. & Cameron-Mills, V. (1998). Allele-dependent barley grain b-amylase activity. Plant Physiol., 117, pp. 679-685. https://doi.org/10.1104/pp.117.2.679

15. Fox G.P., Panozzo J.F. & Li ,C.D. (2003). Molecular basis of barley quality. Austr. J. Agr. Res., 54, pp. 1081-1101. https://doi.org/10.1071/AR02237

16. Hirota, N., Kaneko, T., Kuroda, H. & Kaneda, H. (2005). Characterization of lipoxygenase-1 nullmutants in barley. Theor. Appl. Genet., 111, No. 8, pp.1580-1584. https://doi.org/10.1007/s00122-005-0088-y

17. Modified Starches: Properties and Uses (1986). O.B. Wurzburg ed. Boca Raton, Fl.: CRC Press Inc.,

18. Sjakste, T. & Roder, M. (2004). Distribution and inheritance of b-amylase alleles in north European barley varieties. Hereditas, 141, 39-45. https://doi.org/10.1111/j.1601-5223.2004.01789.x

19. Stewart, C.N. & Via, L.E. (1993). A Rapid CTAB DNA Isolation technique useful for RAPD fingerprinting and other PCR. Appl. Bio Techniques., 14 (5), pp. 748-749.

20. Vinje, M.A., Duke, H.S. & Henson, C.A. (2010). Utilization of different Bmy1 intron III alleles for predicting b-amylase activity and thermostability in wildan and cultivated barley. Plant Mol. Biol. Rep., 28, (3), pp. 491-501. https://doi.org/10.1007/s11105-009-0168-2

21. Yang, G., Schwarz, P.B. & Vick, B.A. (1993). Purification and characterization of lipoxygenase isozymes in germinating barley. Amer. Assoc. Cereal Chem., 70, pp. 589-595.

22. Ye, L., Dai, F. & Qin, L. (2011). Allelic diversity of a beer haze active protein gene in cultivated and Tibetan wild barley and development of allelic specific markers. J. Agric. Food Chem., 59, pp. 7218-7223. https://doi.org/10.1021/jf200419k

23. Ye, L., Huang, L., Huang, Y. & Wu, D. (2014). Haze activity of different barley trypsin inhibitors of the chloroform/methanol type (BTI-Cme). Food Chem., 165, pp. 175-180. https://doi.org/10.1016/j.foodchem.2014.05.058