Fiziol. rast. genet. 2017, vol. 49, no. 2, 121-128, doi: https://doi.org/10.15407/frg2017.02.121

Immunomodulatory properties of bacterial lipopolysaccharides in Arabidopsis thaliana plants and their modification

Shilina J.V.1, Guscha M.I.1, Molozhava O.S.2, Shevchenko J.I.2, Dmitriev A.P.1

  1. Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine 148 Zabolotnogo St., Kyiv, 03143, Ukraine
  2. Educational and Scientific Centre «Institute of Biology» of Taras Shevchenko National University 2 Glushkov Av., Kyiv, 03022, Ukraine

The effect of native and treated with phenol lipopolysaccharides, derived from pathogenic and saprophytic strains of Pseudomonas aeruginosa, on resistance to phytopathogenic bacteria Pseudomonas syringae ІМВ 8511 of Arabidopsis thaliana plants was investigated. The raising or lowering of plant resistance to pathogenic bacteria depended on the origin of LPS, their chemical status, and plants genotype.

Keywords: Arabidopsis thaliana, Pseudomonas aeruginosa, lipopolysaccharides, system resistance, salicylic acid, jasmonic acid

Fiziol. rast. genet.
2017, vol. 49, no. 2, 121-128

Full text and supplemented materials

Free full text: PDF  

References

1. Burov, V.N., Petrova, M.O. & Selitskaya, O.G.(2012). Induced resistance of plants to phytophages. Moscow: T-vo nauch. izdaniy KMK [in Russian].

2. Varbanets, L.D., Zdorovenko, G.M. & Knirel, Yu.A. (2006). Methods for the study of endotoxins. Kiev: Naukova dumka [in Russian].

3. Kots, S.Ya., Morgun, V.V. & Patyka, V.F. (2010). Biological nitrogen fixation: legume-rhizobial symbiosis, Vol. 1. Kiev: Logos [in Russian].

4. Experimental mycology methods: Directory. (1982). Kiev: Naukova dumka [in Russian].

5. Molozhava, O.S. & Shilina, Yu.V. (2007). Phytotoxicity of modified lipopolysaccharides of bacteria. . Vysnyk Harkivskogo natsionalnogo universitetu. Biolohiia, 2 (11), pp. 76-82 [in Ukrainian].

6. Pokrovskiy, V.I., Averbah, M.M., Litvinov, V.I. & Rubtsov, I.V. (1979). Acquired immunity and infectious process. Moscow: Medytsina [in Russian].

7. Pozura, V.K. (Ed.) (2003). Structure and biological activity of bacterial biopolymers. Kyiv: VPTs "Kiyivskiy universitet" [in Ukrainian].

8. Shamray, S.N. (2014). Plant immune system: basal immunity. Cytology and genetics, 48 (4), pp. 67-82 [in Russian]. https://doi.org/10.3103/S0095452714040057

9. Bouwmeester, K. & Govers, F. (2009). Arabidopsis L-type lectin receptor kinases: phylogeny, classification, and expression profiles. J. Exp. Bot., 60, No.15, pp. 4383-4396. https://doi.org/10.1093/jxb/erp277

11. Li, C., Guan, Z., Liu, D., & Raetz, C. R. H. (2011). Pathway for lipid A biosynthesis in Arabidopsis thaliana resembling that of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 108, No. 28, pp. 11387–11392. https://doi.org/10.1073/pnas.1108840108

10. Desclos-Theveniau M., Arnaud D., Huang T.-Y., Lin, G.J., Chen, W.Y., Lin, Y.C. & Zimmerli, L (2012). The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog., 8 (2), e1002513. https://doi.org/10.1371/journal.ppat.1002513

12. Mishina, T.E. & Zeier, J. (2007). Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant Journal, 50, (3), pp. 500-513. https://doi.org/10.1111/j.1365-313X.2007.03067.x

13. Newman, M.-A., Dow, J.M., Molinaro, A. & Parrilli, M. Priming, induction and modulation of plant defense responses by bacterial lipopolysaccharides. J. Endotoxin Res., 13, pp. 68-79.

14. Nicaise, V., Roux, M. & Zipfel, C. (2009). Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiology, 150, pp. 1638-1647. https://doi.org/10.1104/pp.109.139709

15. Silipo, A., Erbs, G., Shinya, T., Dow, J.M., Parilli, M., Lanzetta, R., Shibuya, N., Newman, M.A. & Molinaro, A. (2010). Glycoconjugates as elicitors or suppressors of plant innate immunity. Glycobiology, 20 (4), pp. 406-419. https://doi.org/10.1093/glycob/cwp201

16. Silipo, A., Molinaro, A., Sturiale, L., Dow, J.M., Erbs, G., Lanzetta, R., Newman, M.A. & Parrilli, M. (2005). The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. Journal of Biological Chemistry, 280 (39), pp. 33660-33668. https://doi.org/10.1074/jbc.M506254200

17. Van Wees, S.C.M., de Swart, E.A.M., van Pelt, J.A., van Loon, L.C. & Pieterse, C.M.J. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. PNAS., 97 (15), pp. 8711-8716. https://doi.org/10.1073/pnas.130425197

18. Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P. & Durner, J. (2004). Innate immunuty in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. PNAS., 101 (44), pp. 15811-15816. https://doi.org/10.1073/pnas.0404536101