Fiziol. rast. genet. 2016, vol. 48, no. 1, 56-64, doi: https://doi.org/10.15407/frg2016.01.056

Effect of hyperthermia on cytokinin and pigments content of Glycine max (L.) Merr. varieties differed in thermotolerance

Kosakivska I.B., Yarotska K.M., Voytenko L.V., Babenko L.M.

  • M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereschenkivska St., Kyiv, 01601, Ukraine

The effect of hyperthermia on the quantitative and qualitative composition of cytokinins (CK) in roots and leaves of two Glycine max (L.) Merr. cultivars differed in thermotolerance, which were inoculated with active nitrogen-fixing bacteria Bradyrhizobium japonicum 634b was investigated. It was shown that a short-term heat stress (2 h, +40 °C) at the «alarm» phase caused nonspecific responses, among which there were decrease of CK in roots, increase of trans-zeatin (trans-Z) and izopenteniladenozin (iPA) content in the shoots of 35-day-old soybean plants. At the same time there were found some specific changes in CK content and spectrum, which depended on cultivar, plant organ and presence of nodules with nitrogen-fixing microorganisms. It was shown that the absence of nodules had a negative effect on the content and spectrum of CK in soybean plant. The increase of iP-type CK content and chlorophyll b and chlorophyll a+b level in shoots after hyperthermia is a characteristic feature of the drought-resistant soybean cultivar KyVin.

Keywords: Glycine max (L.) Merr., cytokinins, pigments, hyperthermia

Fiziol. rast. genet.
2016, vol. 48, no. 1, 56-64

Full text and supplemented materials

Free full text: PDF  

References

1. Akimova, G.P. & Sokolova, M.G. (2012). Cytokinin Content during Early Stages of Legume-Rhizobial symbiosis and effect of hypothermia. Russian Journal of Plant Physiology, 59 (5), pp. 656-661. https://doi.org/10.1134/S1021443712030028

2. Andrianova, Y.E. & Tarchevsky, I.A. (2000). Chlorophyll and plant productivity. Moscow: Nauka [in Russian].

3. Buchko, G., Buchko, R., Khruschik,Yu., Romanyuk, N. & Terek, O. (2002). The content of pigments of photosynthesis and sugars in wheat plants when exposed to laser irradiation and Agrostimulin. Visnyk of the Lviv University. Series Biology, No. 29, pp. 211-218 [in Ukrainian].

4. Volkogon, M.V., Mamenko, P.M. & Kots, S.Ya. (2009). IAA and zeatin balance in soybean plants under seeds inoculation with various strains and mutants of bradyrhizobium japonicum. Fiziologia i biokhimia kult. rastenij, 41, No. 5, pp. 409-418 [in Ukrainian].

5. Grischuk A.A., Grischuk V.I. & Kots S.Ya. (2014). The effect of symbiotic properties of Bradyrhizobium japonicum on the cytokinin status of of soybean plants. Scientific Issues Ternopil Volodymyr Hnatiuk National Pedagogical University Series: Biology, 60 (3), pp. 65-68 [in Ukrainian].

6. Grischuk, A.A., Kots, S.Ya. & Volkogon, M.V. (2013). The dynamics of phytohormones cytokinin nature in the roots and nodules of soybean in the early stages of the formation of legume-rhizobial symbiosis. Fiziologia i biokhimia kult. rastenij, 45, No. 1, pp. 20-28 [in Ukrainian].

7. Grodzinsky, D.M. (2013). Adaptive strategy of physiological processes of plants (47th Timiryazevskie readings 25 years later). Kyiv: Nauk. Dumka [in Russian].

8. Javadian, N., Karimzade, G., Mafouzi, S. & Ganati, F. (2010). Cold-induced changes in the activity of enzymes and the content of proline, carbohydrates and chlorophylls in wheat. Russian Journal of Plant Physiology, 57, No. 4, pp. 580-588. https://doi.org/10.1134/S1021443710040126

9. Drok, K.M., Mamenko, P.N., Omelchuk, S.V. & Kosakivska, I.V. (2014). Features of the symbiotic system and the production of ethylene in Glycine max (L.) Merr., Differing in resistance to abiotic stressors. The bulletin of kharkiv national agrarian university. Series biology, 3 (33), pp. 21-28 [in Ukrainian].

10. Kosakivska, I.V., Babenko, L.M., Skaternaya, T.D. & Ustinova, A.Yu. (2014). The effect of hypo-and hyperthermia on lipoxygenase activity, the content of pigments and soluble proteins in wheat seedlings of Yatran 60 variety. Fiziol. rast. genet., 46, No. 3, pp. 212-220 [in Ukrainian].

11. Kosakovskaya, I.V., Babenko, L.M., Skaternaya, T.D. & Ustinova, A.Yu. (2014). Thermal sensitivity of lipoxygenase and winter wheat photosynthesis enzymes. Biotechnologia Acta, 7 (5), pp. 101-107 [in Russian]. https://doi.org/10.15407/biotech7.05.101

12. Kosakivska, I.V., Voytenko, L.V., Likhnyovskiy, R.V. & Ustinova, A.Yu. (2015). The effect of temperature stress on the content of cytokinins in seedlings of Triticum aestivum L. cultivar Yatran 60. Fiziol. rast. genet., 47, No. 4, pp. 296-303 [in Ukrainian].

13. Kots, S.Ya., Morgun, V.V., Patyka, V.F., Datsenko, V.K. & Krugova, E.D. (2010). Biological nitrogen fixation: legume-rhizobial symbiosis in 4 v. V. 1. Kyiv: Logos [in Russian].

14. Kots, S.Ya., Morgun, V.V., Patyka, V.F., Datsenko, V.K. & Krugova, E.D. (2010). Biological nitrogen fixation: associative nitrogen fixation:is in 4 v. V. 4. Kyiv: Logos [in Russian].

15. Guidelines for the determination of phytohormones (1988). Kyiv: Nauk. Dumka [in Russian].

16. Morgun, V.V., Shvartau ,V.V. & Kiriziy, D.A. (2008). The physiological basis of obtaining high yields of winter wheat .Fiziol. rast. genet., 40, No. 6, pp. 463-479 [in Ukrainian].

17. Moshynets,O.V. & Kosakivska, I.V. (2010). Phytosphere ecology: plant-microbial interactions. 1. structure functional characteristic of rhizo-, endo- and phyllosphere the bulletin of kharkiv national agrarian university. Series biology, 2 (20), pp. 19-35[in Ukrainian].

18. Moshynets, O.V. & Kosakivska, I.V. (2010). Phytosphere ecology: plant-microbial interactions. 2. phytosphere as a niche for plant-microbial interactions. functional microbial activity and its influence on plants the bulletin of kharkiv national agrarian university. Series biology, 3 (21), pp. 6-22 [in Ukrainian].

19. Pavlova, Z.B. & Lutova, L.A. (2000). Nodule formation as a model for studying differentiation in higher plants. Genetika, No. 36. pp. 1173-1188 [in Russian].

20. Sokolova, M.G., Akimova, G.P. & Nechaeva, L.V. (2005). Participation of cytokinins in the development of legume-rhizobial symbiosis at low temperature. Agrokhimiya, No. 5, pp. 66-70 [in Russian].

21. Stanetskaya, D.M., Koval, I.V. & Dzhurenko, N.I. (2011). The influence of high-temperature stress on the pigment complex of species of the genus Solidago L. in the reproductive period.Scientific Bulletin of the Uzhgorod University. Series Biology, No. 30, pp. 192-196 [in Ukrainian].

22. Tsavkelova, E.A., Klimova, S.Y., Cherdyntseva, T.A. & Netrusov, A.I. (2006). Microbial producers of plant growth stimulators and their practical use: a review. Appl. Biochem. Microbiol. No. 42, pp. 117-126. https://doi.org/10.1134/S0003683806020013

23. Aloni, R., Langhans, M., Aloni, E., Dreieicher, E. & Ullrich, C.I. (2005). Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. Journal of Experimental Botany, No. 56, pp. 1535-1544. https://doi.org/10.1093/jxb/eri148

24. Ferguson, B.J. & Mathesius, U. (2003). Signaling interactions during nodule developmental. J. Plant Growth Regul., 22 (1), pp. 47-72. https://doi.org/10.1007/s00344-003-0032-9

25. Frugier, F., Kosuta, S., Murray, J.D., Crespi, M. & Szczyglowski, K. (2008). Cytokinin: Secret agent of symbiosis. Trends Plant Sci., No. 13, pp. 115-120. https://doi.org/10.1016/j.tplants.2008.01.003

26. Gage, D.J. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev., No. 68, pp. 280-300. https://doi.org/10.1128/MMBR.68.2.280-300.2004

27. Hirose, N., Takei, K., Kuroha, T., Kamada-Nobusada, T., Hayashi, H. & Sakakibara, H. (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot., No. 259, pp. 75-83. https://doi.org/10.1093/jxb/erm157

28. Rivero, R.M., Gimeno, J., Van Deynze, A., Walia, H. & Blumwald, E. (2010). Enhanced cytokinin synthesis in tobacco plants expressing PSARK

29. Wellburn, A. (1994).The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., 144, pp. 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2

30. Werner, T. & Schmulling, T. (2009). Cytokinin action in plant development. Curr. Opin. Plant Biol., 12, pp. 527-538. https://doi.org/10.1016/j.pbi.2009.07.002