Fiziol. rast. genet. 2016, vol. 48, no. 6, 463-474, doi: https://doi.org/10.15407/frg2016.06.463

Bacterial acyl homoserine lactones in plant priming biotechnology: achievements and prospects of use in agricultural production

Babenko L.M.1, Moshynets O.V.2, Shcherbatiuk M.M.1, Kosakivska I.V.1

  1. M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine 2 Tereschenkivska St., Kyiv, 01601, Ukraine
  2. Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine 150 Akademika Zabolotnogo St., Kyiv, 03680, Ukraine

Literature data on acyl homoserine lactones (AHL), a novel class of bacterial mediator molecules involved in a remote signal transduction, have been analyzed and summarized. Their involvement in auto-reception of bacterial population quantitative parameters called “quorum sensing” (QS) is discussed. The QS phenomenon and its components are related to the regulation of plant and bacteria physiological processes including bio-film formation, phytohormone synthesis, plasmid transfer, production of virulent factors, etc. A special attention is given to the AHL involvement in plant growth and development regulation, prospects of their application in crops priming biotechnology, modeling of protection responses and development of genetic resistance in nonresistant plants.

Keywords: acyl homoserine lactone, biofilm, autoinductor, plant priming biotechnology

Fiziol. rast. genet.
2016, vol. 48, no. 6, 463-474

Full text and supplemented materials

Free full text: PDF  

References

1. Babenko, L.M., Kosakivska, I.V., Skaterna, T.D. & Kharchenko, O.V. (2013). Plant lipoxygenase at adaptation to influence of abiotic stress factors. Bull. Kharkov. Natl. Agr. Univ., No. 2, pp. 6-19 [in Ukrainian].

2. Boubriak, O.A., Akimkina, T.V., Dmitriev, O.P., Grodzinsky, D.M. & Boubriak, I.I. (2013). Search for molecular markers for optimization presowing processing (priming) of seeds. Bull. Kharkov. Natl. Agr. Univ., No. 2, pp. 47-57 [in Ukrainian].

3. Gostev, V.V. & Sidorenko, S.V. (2010). Bacterial biofilms and infections. Zhurn. infektologii, No. 2(3), pp. 4-15 [in Russian].

4. Kolupaev, Yu.E. & Karpets, Yu.V. (2010). Formation of adaptive reactions of plants to the action of abiotic stresses. Kiev: Osnova [in Russian].

5. Krestetska, S.L. & Nesterenko, A.M. (2007). Autoinduction and signal transduction: communication systems in microbial populations. Annals of Mechnicov Institute, No. 1, pp. 4-9 [in Ukrainian].

6. Moshynets, O.V. & Kosakivska, I.V. (2010). Phytosphere ecology: plant-microbial interactions. 1. structure functional characteristic of rhizo-, endo- and phyllosphere. Bull. Kharkov. Natl. Agr. Univ., No. 2(20), pp. 19-35 [in Ukrainian].

7. Moshynets, O.V., Shpylova, S.P., Spiers, A.J. & Kosakivska, I.V. (2010). The phytosphere of Brassica napus L. as a niche for Pseudomonas fluorescens SBW25. Dopov. Nac. akad. nauk Ukr., No. 12, pp. 150-153 [in Ukrainian].

8. Oleskin, A.V., Botvinko, I.V. & Tsavkelova, E.A. (2000). Colony organization and intracellular communication in microorganisms. Microbiology, No. 3, pp. 309-327 [in Russian]. https://doi.org/10.1007/BF02756730

9. Bai, X., Todd, C.D., Desikan, R. & Yang, Y. (2012). N-3-oxo-decanoyl-L-homoserinelactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in muny bean. Plant Physiol., No. 158, pp. 725-736. https://doi.org/10.1104/pp.111.185769

10. Bassler, B. (2002). Small talk. Cell-to-cell communication in bacteria. Cell, No. 109(4), pp. 421-424. https://doi.org/10.1016/S0092-8674(02)00749-3

11. Beckers, G.J., Jaskiewicz, M., Liu, Y., Underwood W.R., He S.Y., Zhang S. & Conrath, U. (2009). Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell., No. 21, pp. 944-953. https://doi.org/10.1105/tpc.108.062158

12. Beckers, G.J. & Spoel, S.H. (2006). Fine-tuning plant defense signaling: salicylate versus jasmonate. Plant Biol. (Stuttg.), No. 8, pp. 1-10.

13. Beneduzi, A., Ambrosini, A. & Passaglia, L.M. (2012). Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol., No. 35, pp. 1044-1051. https://doi.org/10.1590/S1415-47572012000600020

14. Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol., No. 84, pp. 11-18. https://doi.org/10.1007/s00253-009-2092-7

15. Brader, G., Compant, S., Mitter, B. Trognitz, F. & Sessitsch, A. (2014). Metabolic potential of endophytic bacteria. Curr. Opin. Biotechnol., No. 27, pp. 30-37. https://doi.org/10.1016/j.copbio.2013.09.012

16. Conrath, U., Pieterse, C. & Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends Plant Sci., No. 7, pp. 210-216. https://doi.org/10.1016/S1360-1385(02)02244-6

17. Farah, C., Vera, M., Morin, D., Dominique H., Jerez, C.A. & Guiliani, N. (2005). Evidence for a functional quorum-sensing type AI-1 system in the extermophilic bacterium Acidithibacillus ferrooxidans. AEM, No. 7(11), pp. 7033-7040. https://doi.org/10.1128/AEM.71.11.7033-7040.2005

18. Fukua, W., Winans, S. & Greenberg, E. (1994). Quorum sensing in bacteria: the LuxR/LuxI family of cell density responsive transcriptional regulators. J. Bacteriol., No. 176, pp. 269-275. https://doi.org/10.1128/jb.176.2.269-275.1994

19. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol., No. 43, pp. 205-227. https://doi.org/10.1146/annurev.phyto.43.040204.135923

20. Gonzalez, J.E. & Marketon, M.M. (2003). Quorum sensing in nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev., No. 67, pp. 574-592. https://doi.org/10.1128/MMBR.67.4.574-592.2003

21. Hernandez-Reyes, C., Schenk, S.T., Neumann, C., Kogel, K.H. & Schikora, A. (2014). N-acyl-homoserine lactone-producing bacteria protect plants against plant and human pathogens . Microbiol. Biotechnol., No. 7, pp. 580-588. https://doi.org/10.1111/1751-7915.12177

22. Iida, A., Ohnishi, Y. & Horinouchi, S. (2008). Control of acetic acid fermentation by quorum sensing via N-acylhomoserine lactones in Gluconacetobacter intermedius. J. Bacteriol., No. 190 (7), pp. 2546-2555. https://doi.org/10.1128/JB.01698-07

23. Iida, A., Ohnishi, Y. & Horinouchi, S. (2009). Identification and characterization of target genes of the GinI/GinR quorum-sensing system in Gluconacetobacter intermedius . Microbiology, No. 155, pp. 3021-3032. https://doi.org/10.1099/mic.0.028613-0

24. Jaskiewicz, M., Conrath, U. & Peterhansel, C. (2011). Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response . EMBO Rep., No. 12, pp. 50-55. https://doi.org/10.1038/embor.2010.186

25. Jung, H.W., Tschaplinski, T.J., Wang, L., Glazebrook, J. & Greenberg, J.T. (2009). Priming in systemic plant immunity. Science, No. 324, pp. 89-91. https://doi.org/10.1126/science.1170025

26. Kievit, T. & Iglewsky, B. (2000). Bacterial quorum sensing in pathogenic relationships. Infect. Immun., No. 68 (9), pp. 4839-4849. https://doi.org/10.1128/IAI.68.9.4839-4849.2000

27. Koornneef, A. & Pieterse, C.M. (2008). Cross talk in defense signaling. Plant Physiol., No. 146, pp. 839-844. https://doi.org/10.1104/pp.107.112029

28. Liu, F., Bian, Z., Jia, Z., Zhao, Q. & Song, S. (2012). The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acylhomoserine lactones, the bacterial quorum-sensing signals. Mol. Plant-Microbe. Interact., No. 25, pp. 677-683. https://doi.org/10.1094/MPMI-10-11-0274

29. Losick, R. & Kaiser, D. (1997). Why and how bacteria communicate. Sci. Amer., No. 276(2), pp. 68-73. https://doi.org/10.1038/scientificamerican0297-68

30. Luna, E., Bruce, T.J., Roberts, M.R., Flors, V. & Ton, J. (2012). Next-generation systemic acquired resistance. Plant Physiol., No. 158, pp. 844-853. https://doi.org/10.1104/pp.111.187468

31. Manos, J. Arthur, J., Rose, B., Tingpej, P., Fung, C., Curtis, M., Webb, J.S., Hu, H., Kjelleberg, S., Gorrell, M.D., Bye, P. & Harbour, C. (2008). Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. J. Med. Microbiol., No. 57, pp. 1454—1465. https://doi.org/10.1099/jmm.0.2008/005009-0

32. Mark, J., Mandel, M.S., Wollenberg, E.V. Stabb, E.V, Visick, K.L. & Ruby, E.G. (2003). A single regulatory gene is sufficient to alter bacterial host range. Nature, No. 458, pp. 215-218.

33. Marketon, M.M., Glenn, S.A., Eberhard, A. & Gonzalez, J.E. (2003). Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol., No. 185, pp. 325-331. https://doi.org/10.1128/JB.185.1.325-331.2003

34. Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anollés, G., Rolfe, B.G., Bauer, W.D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. USA, No. 100, pp. 1444-1449. https://doi.org/10.1073/pnas.262672599

35. McLean, R.J., Pierson, L.S. & Fuqua, C. (2004). A simple screening protocol for the identification of quorum signal antagonists. J. Microbiol. Methods., No. 58, pp. 351-360. https://doi.org/10.1016/j.mimet.2004.04.016

36. Nadeem, S.M., Ahmad, M., Zahir, Z.A., Javaid, A. & Ashraf, M. (2013). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv., No. 32, pp. 429-448.

37. Natelson, S. & Natelson, E.A. (1989). Preparation of D-, DL- and L-homoserine lactone from methionine. Microchem. J., No. 40, pp. 226-232. https://doi.org/10.1016/0026-265X(89)90074-X

38. Normander, B. & Prosser, J. L. (2000). Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl. Environ. Microbiol., No. 66, pp. 4372-4377. https://doi.org/10.1128/AEM.66.10.4372-4377.2000

39. Ortiz-Castro, R., Martinez-Trujillo, M. & Lopez-Bucio, J. (2008). N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ., No. 31, pp. 1497-1509. https://doi.org/10.1111/j.1365-3040.2008.01863.x

40. Palmer, A.G., Senechal, A.C., Mukherjee, A., Ané, J.M. & Blackwell, H.E. (2014). Plant responses to bacterial N-acyl-L-homoserine lactones are dependent on enzymatic degradation to L-homoserine. ACS Chem. Biol., No. 9, pp. 1834-1845. https://doi.org/10.1021/cb500191a

41. Parsek, M., Val, D., Hanzelka, B., Cronan, J. & Greenberg, E.P. (1999). Acyl homoserine lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA, No. 96, pp. 4360-4365. https://doi.org/10.1073/pnas.96.8.4360

42. Rasmann, S., De Vos, M., Casteel, C.L., Tian, D., Halitschke, R., Sun, J.Y., Agrawal, A.A., Felton, G.W. & Jander, G. (2012). Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol., No. 158, pp. 854-863. https://doi.org/10.1104/pp.111.187831

43. Ortíz-Castro, R., Contreras-Cornejo, H.A., Macías-Rodríguez, L. & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signal. Behav., No. 4 (8), pp. 701-712. https://doi.org/10.4161/psb.4.8.9047

44. Revenchon, S., Bouillant, M.L., Salmond, G. & Nasser, W. (1998). Integration of the quorum-sensing system in the regulatory networks controlling virulence factor synthesis in Erwinia chrysanthemii. Mol. Microbiol., No. 29, pp. 1407-1418. https://doi.org/10.1046/j.1365-2958.1998.01023.x

45. Salmond, G.P.C., Bycroft, B.W., Stewart, C.S.A.B. & Williams, P. (1995). The bacterial "enigma": cracking the code of cell-cell communication. Mol. Microbiol., No. 16 (4), pp. 615-624. https://doi.org/10.1111/j.1365-2958.1995.tb02424.x

46. Schenk, S. & Schikora, A. (2015). AHL-priming function via oxylipin and salicylic acid. Front. Plant Sci., No. 5, pp. 784-794. https://doi.org/10.3389/fpls.2014.00784

47. Schenk, S.T., Hernandez-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., Reichelt, M., Mithofer, A., Becker, A., Kogel, K.H. & Schikora, A. (2014). N-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell., No. 26, pp. 2708-2723. https://doi.org/10.1105/tpc.114.126763

48. Schikora, A., Schenk, S.T., Stein, E., Molitor, A., Zuccaro, A. & Kogel, K.H. (2011). N-Acyl-homoserine lactone confers resistance towards biotrophic and hemibiotrophic pathogens via altered activation of AtMPK. Plant Physiol., No. 57, pp. 1407-1418. https://doi.org/10.1104/pp.111.180604

49. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A. & Langebartels, C. (2006). Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ., No. 29, pp. 909-918. https://doi.org/10.1111/j.1365-3040.2005.01471.x

50. Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B. & Mauch-Mani, B. (2012). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol., No. 158, pp. 835-843. https://doi.org/10.1104/pp.111.191593

51. Spoel, S.H. & Dong, X. (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe, No. 3, pp. 348-351. https://doi.org/10.1016/j.chom.2008.05.009

52. Teplitski, M., Robinson, J.B. & Bauer, W.D. (2000). Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol. Plant-Microbe Interact., No. 13, pp. 637-648. https://doi.org/10.1094/MPMI.2000.13.6.637

53. Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M.N., Métraux, J.P. & Mauch-Mani, B. (2005). Dissecting the b-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell., No. 17, pp. 987-999. https://doi.org/10.1105/tpc.104.029728

54. Tsai, C.H., Singh, P., Chen, C.W., Thomas, J., Weber, J., Mauch-Mani, B. & Zimmerli, L. (2011). Priming for enhanced defense responses by specific inhibition of the Arabidopsis response to coronatine. Plant J., No. 65, pp. 469-479. https://doi.org/10.1111/j.1365-313X.2010.04436.x

55. van Elsas, J.D., Tumer, S. & Bailey, M.J. (2003). Horizontal gene transfer in the phytosphere. New Phytol., No. 157, pp. 525-537. https://doi.org/10.1046/j.1469-8137.2003.00697.x

56. van Peer, P., Punte, H.L. M., De Weger, L. A. & Schippers, B. (1990). Characterization of root surface and endorhizosphere Pseudomonas in relation to their colonization of roots. Appl. Environ. Microbiol., No. 56, pp. 2462-2470.

57. van Wees, S.C., De Swart, E.A., van Pelt, J.A., van Loon, L.C. & Pieterse, C.M.J. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, No. 97, pp. 8711-8716. https://doi.org/10.1073/pnas.130425197

58. von Rad, U., Klein, I., Dobrev, P.I., Kottova, J., Zazimalova, E., Fekete, A., Hartmann, A, Schmitt-Kopplin, P. & Durner, J. (2009). Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta, No. 229, pp. 73-85.

59. Whitehead, N., Barnard, A., Slater, H., Simpson, N.J. & Salmond, G.P. (2001). Quorum sensing in Gram-negative bacteria. FEMS Microbiol. Rev., No. 25, pp. 365-404. https://doi.org/10.1111/j.1574-6976.2001.tb00583.x

60. Zarkani, A.A., Stein, E., Rohrich, C.R., Schikora, M., Evguenieva-Hackenberg, E., Degenkolb, T., Vilcinskas, A., Klug, G., Kogel, K.H. & Schikora, A. (2013). Homoserine lactones influence the reaction of plants to rhizobia. Int. J. Mol. Sci., No. 4, pp. 17122-17146. https://doi.org/10.3390/ijms140817122