Фізіологія рослин і генетика 2019, том 51, № 4, 324-337, doi: https://doi.org/10.15407/frg2019.04.324

Вплив екзогенної абсцизової кислоти на морфометричні показники ростових процесів озимої пшениці та спельти за дії гіпертермії

Косаківська І.В., Васюк В.А., Войтенко Л.В.

Ключові слова: Triticum aestivum, Triticum spelta, abscisic acid, temperature stress, morphometry, resistance

Фізіологія рослин і генетика
2019, том 51, № 4, 324-337

Повний текст та додаткові матеріали

У вільному доступі: PDF  

Цитована література

1. Voytenko, L.V. & Kosakivska, I.V. (2016). Polyfunctional phytohormone abscisic acid. Visnyk Kharkiv. natsion. ahr. un-tu, 1, No. 37, pp. 27-41 [in Ukrainian].

2. Kosakivska, I.V. (2007). Environmental Direction in Plant Physiology: Achievements and Prospects. Fiziologiya i biokhimiya kult. rastenii, 39, No. 4, pp. 279-290 [in Ukrainian].

3. Kosakivska, I.V., Vasyuk, V.A. & Voytenko, L.V. (2018). Drought stress effects on growth characteristics of two relative weats Triticum aestivum L. and Triticum spelta L. Fiziol. rast. genet., 50, No. 3, pp. 241-252 [in Ukrainian]. https://doi.org/10.15407/frg2018.03.241

4. Kosakivska, I.V., Vasyuk, V.A. & Voytenko, L.V. (2019). Effects of exogenous abscisic acid on seed germination and morphological characteristics of two related wheats Triticum aestivum L. and Triticum spelta L. Fiziol. rast. genet., 51, No. 1, pp. 55-66 [in Ukrainian]. https://doi.org/10.15407/frg2019.01.055

5. Babenko, L.M., Hospodarenko, H.M., Rozhkov, R.V., Pariy, Ya.F., Pariy, M.F., Babenko, A.V. & Kosakivska, I.V. (2018).Triticum spelta L.: origin, biological characteristics and perspectives of use in breeding and agriculture. Regulatory Mechanisms in Biosystems, 8, No. 2, pp. 250-257 [in Ukrainian]. https://doi.org/10.15421/021837

6. Brestic, M., Zivcak, M., Hauptvoge, P., Misheva, S., Kocheva, K., Yang, X., Li, X. & Allakhverdiev, S.I. (2018). Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. Photosynthesis Research, 136, No. 2, pp. 245-255. https://doi.org/10.1007/s11120-018-0486-z

7. Bucker-Neto, L., Paiva, A.L.S., Machado, R.D., Arenhart, R.A. & Margis-Pinheiro, M. (2017). Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol., 40, pp. 373-386. https://doi.org/10.1590/1678-4685-gmb-2016-0087

8. Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R. & Abrams, S.R. (2010). Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol., 61, pp. 651-679. https://doi.org/10.1146/annurev-arplant-042809-112122

9. Deak, K.I. & Malamy, J. (2005). Osmotic regulation of root system architecture. Plant J., 43, pp. 17-28. https://doi.org/10.1111/j.1365-313X.2005.02425.x

10. Dominguez, P.G., Frankel, N., Mazuch, J., Balbo, I., Iusem, N., Fernie, A.R. & Carrari, F. (2013). ASR1 mediates glucose-hormone cross talk by affecting sugar trafficking in tobacco plants. Plant Physiol., 161, pp. 1486-1500. https://doi.org/10.1104/pp.112.208199

11. Duan, L., Dietrich, D., Ng, C.H., Chan, P.M.Y., Bhalerao, R., Bennett, M.J. & Dinnenya, J.R. (2013). Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell, 25, pp. 324-341. https://doi.org/10.1105/tpc.112.107227

12. Ehlert, C., Maurel, C., Tardieu, F. & Simonneau, T. (2009). Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Plant Physiol., 150, pp. 1093-1104. https://doi.org/10.1104/pp.108.131458

13. Geiger, D., Maierhofer, T., Al-Rasheid, K.A., Scherzer, S., Mumm, P., Liese, A., Ache, P., Wellmann, C., Marten, I., Grill, E., Romeis, T. & Hedrich, R. (2011). Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal., 4 (173), ra32-ra32. https://doi.org/10.1126/scisignal.2001346

14. Hu, X., Liu, R., Li, Y., Wang, W., Tai, F., Xue, R. & Li, C. (2010). Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul., 60, pp. 225-235. https://doi.org/10.1007/s10725-009-9436-2

15. Islam, M.R., Baohua, F., Tingting, C., Longxing, T. & Guanfu, F. (2018a). Role of Abscisic Acid in Thermal Acclimation of Plants. J. Plant Biol., 61, pp. 255-264. https://doi.org/10.1007/s12374-017-0429-9

16. Islam, M.R., Feng, B., Chen, T., Fu, W., Zhang, C., Tao, L. & Fu, G. (2018b) Abscisic acid prevents pollen abortion under high temperature stress by mediating sugar metabolism in rice spikelets. Physiol. Plantarum, 165, No. 3, pp. 644-663. https://doi.org/10.1111/ppl.12759

17. Kim, T.H., Bohmer, M., Hu, H., Nishimura, N. & Schroeder, J.I. (2010). Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling. Annu. Rev. Plant Biol., 61, pp. 561-591. https://doi.org/10.1146/annurev-arplant-042809-112226

18. Kim, T.H. (2012). Plant Stress Surveillance Monitored by ABA and Disease Signaling Interactions. Mol. Cells, 33, pp. 1-7. https://doi.org/10.1007/s10059-012-2299-9

19. Liu, L.J., Cang, J., Yu, J., Wang, X., Huang, R., Wang, J. & Lu, B.W. (2013.). Effects of exogenous abscisic acid on carbohydrate metabolism and the expression levels of correlative key enzymes in winter wheat under low temperature. Biosci. Biotechnol. Biochem., 77, pp. 516-525. https://doi.org/10.1271/bbb.120752

20. Li, H., Liu, S.S., Yi, C.Y., Wang, F., Zhou, J., Xia, X.J., Shi, K., Zhou, Y.H. & Yu, J.Q. (2014). Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants. Plant Cell Environ., 37, pp. 2768-2780. https://doi.org/10.1111/pce.12360

21. Maurel, C., Boursiac, Y., Luu, D.T., Santoni, V., Shahzad, Z. & Verdoucq, L. (2015). Aquaporins in plants. Physiol. Rev., 95, pp. 1321-1358. https://doi.org/10.1152/physrev.00008.2015

22. Matsuoka, Y. & Nasuda, S. (2004). Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor. Appl. Genet., 109, pp. 1710-1717. https://doi.org/10.1007/s00122-004-1806-6

23. McAdam, S.A., Brodribb, T.J. & Ross, J.J. (2016). Shoot-derived abscisic acid promotes root growth. Plant Cell Environ., 39, pp. 652-659. https://doi.org/10.1111/pce.12669

24. Muhei, S.H. (2018). Seed Priming with Phytohormones to Improve Germination Under Dormant and Abiotic Stress Conditions. Adv. Crop Sci. Technol., 6, is. 6. https://doi.org/10.4172/2329-8863.1000403

25. Rook, F., Hadingham, S.A., Li, Y. & Bevan, M.W. (2006). Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ., 29, pp. 426-434. https://doi.org/10.1111/j.1365-3040.2005.01477.x

26. Saab, I.N., Sharp, R.E., Pritchard, J. & Voetberg, G.S. (1990). Increased endogenous abscisic acid maintains, primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol., 93, pp. 1329-1336. https://doi.org/10.1104/pp.93.4.1329

27. Ummenhofer, C.C. & Meehl, G.A. (2017). Extreme weather and climate events with ecological relevance. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 372, pp. 1-12. https://doi.org/10.1098/rstb.2016.0135

28. Vaieretti, M.V., Di'az, S., Vile, D. & Garnier, E. (2007). Two Measurement Methods of Leaf Dry Matter Content Produce Similar Results in a Broad Range of Species. Annals of Botany, 99, pp. 955-958. https://doi.org/10.1093/aob/mcm022

29. Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R., Kumar, Vivek, Verma, R., Upadhyay, R.G., Pandey, M. & Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front. Plant Sci., 8. https://doi.org/10.3389/fpls.2017.00161

30. Wilson, P.J., Thompson, K. & Hodgson, J.G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist., 143, pp. 155-162. https://doi.org/10.1046/j.1469-8137.1999.00427.x

31. Zhu, J.-K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell, 167, pp. 313-324. https://doi.org/10.1016/j.cell.2016.08.029