en   ru   uk  
 
 
Физиология растений и генетика 2019, том 51, № 6, 493-509, doi: https://doi.org/10.15407/frg2019.06.493

Модификаторы метаболизма биологически активных веществ клеточных культур расторопши пятнистой (Silybum marianum L.) белорусской и венгерской селекции

Ковзунова О.В., Решетников В.Н.

  • Государственное научное учреждение «Центральный ботанический сад Национальной академии наук Беларуси» 220012 Минск, ул. Сурганова, 2в

В качестве модификаторов метаболизма биологически активных веществ (БАВ) клеточных культур Silybum marianum красно- и белоцветковой рас может быть использован комплексный препарат наночастиц «Наноплант-Со,Мn,Сu,Fе» в концентрации 0,01 мг/л, а также электромагнитное излучение сверхвысокочастотного диапазона волн 65—71 ГГц низкого уровня мощности 10 мВт при экспозиции 20 мин. Длительнокультивируемые суспензионные культуры являются более отзывчивыми на электромагнитную обработку, а каллюсные культуры — на внесение препарата наночастиц ме­таллов.

Ключевые слова: Silybum marianum L., расторопша, культура in vitro, наночастицы ме­таллов, электромагнитное поле сверхвысоких частот, флаволигнаны, фенольные соединения, биологически активные вещества

Физиология растений и генетика
2019, том 51, № 6, 493-509

Полный текст и дополнительные материалы

В свободном доступе: PDF  

Цитированная литература

1. Verpoorte, R., Contin, A. & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochem. Rev., 1, No. 1, pp. 13-25. https://doi.org/10.1023/A:1015871916833

2. Zschocke, S., Rabe, T., Taylor, J.L., Jager, A.K. & van Staden, J. (2000). Plant part substitution - a way to conserve endangered medicinal plants? J. of Ethnopharmacology, 71, No. 1/2, pp. 281-292. https://doi.org/10.1016/S0378-8741(00)00186-0

3. Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. of Med. Plants Res., 3, No. 13, pp. 1222-1239.

4. Zaprometov, M.N. (1981). Secondary metabolism in plant cell and tissue cultures. Culture of plant cells. Moscow: Science, pp. 37-51.

5. Devyatkov, N.D. & Golant, M.V. (1994). Features of the medicobiological application of millimeter waves. Moscow: IRE RAS.

6. Tambiev, A.H., Kirikova, N.N. & Lapshin, O.M. (1992). Changes in the photosynthetic activity of microalgae under the influence of electromagnetic radiation. Plant Physiology, 39, No. 5, pp. 21-26.

7. Tambiev, A.H., Gusev, M.V., Kirikova, N.N., Beckiy, O.V. & Gulaev, Y.V. (1986, 7-13 Sept.). Stimulation of growth of cyanobacteria by millimeter electromagnetic radiation of low intensiveness. Trade exibtion microbe-86: XIX Intern. congr. microbiol. (pp. 96-99), Manchester.

8. Sharov, V.S., Kazarinov, K.D., Andreev, V.E., Putvinsky, A.V. & Betsky, O.V. (1983). Acceleration of lipid peroxidation under the action of millimeter-wave electromagnetic radiation. Biophysics, 28, No. 1, pp. 146-147.

9. Chander, R., Kapoor, N.K. & Dhawan, B.N. (1989). Hepatoprotective activity of silymarin against hepatic damage in Mastomys natalensis infected with Plasmodium berghei. Ind. J. of Med. Res., 90, pp. 472-477.

10. Jayaram, S. & Thyagarajan, S.P. (1996). Inhibition of HBsAg secretion from Alexander cell line by Phyllanthus amarus. Ind. J. of Pathology and Microbiol., 39, Iss. 3, pp. 211-215.

11. Yuriev, K.L. (2010). Silymarin: effects and mechanisms of action, clinical efficacy and safety. Part I. Effects and mechanisms of action. Ukr. honey. Hours, No. 2, pp. 71-75.

12. Duke's phytochemical and ethnobotanical databases. (2017). US Dep. of Agr., Nat. Agr. Libr. Mode of access: https://phytochem.nal.usda.gov/phytochem/search. (Date of access: 13.10.2017).

13. Valenzuela, A., Guerra, R. & Videla, L.A. (1986). Antioxidant properties of the flavonoids silybin and (+)-cyanidanol-3: comparison with butylated hydroxyanisole and butylated hydroxytoluene. Planta Med., 52, Iss. 6, pp. 438-440. https://doi.org/10.1055/s-2007-969247

14. Krecman, V., Skottova, N., Walterova, D., Ulrichova, J. & Simanek, V. (1998). Silymarin inhibits the development of diet-induced hypercholesterolemia in rats. Planta Med., 64, Iss. 2, pp. 138-142. https://doi.org/10.1055/s-2006-957391

15. Chubarova, A.S., Kapustin, M.A., Spiridovich, E.V. & Kurchenko, V.P. (2012). The content of flavolignans in milk thistle fruits of Silybum marianum (L.) of various hemoras. Vestn. pharmacy, No. 4, pp. 28-31.

16. Kopach, O.V., Kuzovkova, A.A. & Reshetnikov, V.N. (2013). Physiological and biochemical characteristics of Silybum marianum red and white flowering races when introduced into in vitro culture and callusogenesis. Weight. NAS of Belarus. Ser. byal navuk, No. 4, pp. 5-10.

17. State Pharmacopoeia of the Republic of Belarus: developed on the basis of the European Pharmacopoeia: [in 3 tons]. (2009). Ministry of Health Rep. Belarus, Center for Expertise and Testing in Health Care. Molodechno: Victory, 3: Quality control of pharmaceutical substances: introduction. on December 22, 2009 order M-VA Health Rep. Belarus of 10.07.09, No. 691, [under total. ed. A. A. Sheryakov], 727 s.

18. Lukovnikova, R.A. & Yarosh, N.P. (1987). Determination of vitamins and other biologically active substances. Methods of biochemical studies of plants. Ermakov, A.I. (Ed.). 3rd, pererabot. and add. Leningrad, pp. 85-121.

19. Fedoseeva, G.M., Mirovich, V.M., Goryachkina, E.G. & Perelomova, M.V. (2009). Phytochemical analysis of plant materials containing flavonoids: method. Allowance. Irkut. state honey. University of the Ministry of Social Development of the Russian Federation. Irkutsk: [b. and.], 67 p.

20. Azizbekyan, S.G. Domash, V.I. & Kuchinsky, M.P. New nanopreparations for plant growing and veterinary. Belarusian National Technical University. http://www.bntu.by/ images/stories/News/Forum/Latvia2013/40.pdf. (Access date: 09/20/17).

21. Azizbekyan, S.G., Domash, V.I., Kuchinsky, M.P. & Nabiullin, A.R. (2013, 3-5 October). New nanopreparations for the agro-industrial complex. Proceedings of the V International Scientific Practical. conference Actual problems of biology, nanotechnology and medicine (p. 257), Rostov-on-Don.

22. Kovzunova, O.V. (2016). Effect of nanoparticles of metals on biosynthesis of biologically active substances in suspension culture Silybum marianum L. Lomonosov-2016: Proc. report International conf. students, graduate students and young scientists, M.V. Lomonosov Mosc. State Un-ty them., Biol. fact. (pp. 350-351), Moscow.

23. Tambiev, A.Kh., Kirikova, N.N., Lapshin, O.M., Smirnov, N.A. & Gusev, M.V. (1990). The stimulating effect of electromagnetic radiation of the millimeter range of low intensity on the growth of microalgae. Vestn. Mosc. un-ta. Ser. 16, Biology. No. 1, p. 32.

24. Kopach, O.V. & Pushkina, N.V. (2015). The impact of the electromagnetic field on the biosynthesis of biologically active substances in cell cultures of Silybum marianum. Hydrobiology and General Ecology: mes. report XXII Intern. conf. students, postgraduates, and young scientists, M.V. Lomonosov Mosc. State Un-ty them. (pp. 340-341), Moscow.