Физиология растений и генетика 2019, том 51, № 2, 172-182, doi: https://doi.org/10.15407/frg2019.02.172

Влияние ионов Сd2+ на активность стромальных карбоангидраз хлоропластов шпината

Топчий Н.Н.1, Полищук А.В.1, Золотарева Е.К.1, Сытник С.К.2

  1. Институт ботаники им. Н.Г. Холодного Национальной академии наук Украины, Киев
  2. Институт физиологии растений и генетики Национальной академии наук Украины, Киев

Фракция стромальных белков хлоропластов, изолированных из листьев Spinacia oleracea, получена после осмотического разрушения целых хлоропластов, отмытых от компонентов цитозоля. Методом инфракрасного СО2-анализа исследовано влияние ионов кадмия на активность стромальных карбоангидраз (КА). Полумаксимальное игибирование дегидратазной активности КА наблюдалось при добавлении к реакционной среде 35 мкМ СdСl2, при добавлении 80 мкМ ферментативная активность составляла 15 % контрольного значения. КА активность в ПААГ после неденатурирующего электрофореза визуализировали по изменению окраски индикатора бромтимолового синего в местах локализации КА. Обнаружены четыре белковые зоны с разной подвижностью и с различным уровнем КА активности. Количество зон с КА активностью и интенсивность их окраски уменьшались после предобработки стромальных белков СdСl2 разной концентрации. Наиболее чувствительной к действию Сd2+ оказалась низкомолекулярная форма КА, активность которой полностью подавлялась в образцах, обработанных 80 мкМ СdСl2, тогда как КА, ассоциированная с РБФК/О, частично сохраняла активность после инкубации стромальных белков со 150 мкМ СdСl2. Полученные данные подтвердили возможность использования КА хлоропластов как биомаркера раннего мониторинга загрязнения окружающей среды тяжелыми металлами.

Ключевые слова: Spinacia oleracea, кадмий, карбоангидраза, биомаркер

Физиология растений и генетика
2019, том 51, № 2, 172-182

Полный текст и дополнительные материалы

В свободном доступе: PDF  

Цитированная литература

1. https://eur-lex.europa.eu/

2. Shahid, M., Dumat, C., Khalid, S., Niazi, N. K. & Antunes, P. M. (2016). Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Reviews of Environmental Contamination and Toxicology, 241, pp. 73-137. https://doi.org/10.1007/398_2016_8

3. Ilyin, V.B. (2012). Heavy metals and non-metals in the soil-plant system. Novosibirsk: Science. 218 p. [in Russian].

4. Kupper, H. & Leitenmaier, B. (2013). Cadmium-accumulating plants. In Cadmium: from toxicity to essentiality. Springer, Dordrecht, pp. 373-393. https://doi.org/10.1007/978-94-007-5179-8_12

5. Dias, M. C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Goncalves, B. & Santos, C. (2012). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol. Plant., 35, No. 4, pp. 1281-1289. https://doi.org/10.1007/s11738-012-1167-8

6. Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plants. Brazilian J. of Plant Physiol., 17, No. 1, pp. 21-34. https://doi.org/10.1590/S1677-04202005000100003

7. Perreault, F., Dionne, J., Didur, O., Juneau, P. & Popovic, R. (2011). Effect of cadmium on photosystem II activity in Chlamydomonas reinhardtii: alteration of O-J-I-P fluorescence transients indicating the change of apparent activation energies within photosystem II. Photosynth. Res., 107, No. 2, pp. 151-157. https://doi.org/10.1007/s11120-010-9609-x

8. Faller, P., Kienzler, K. & Krieger-Liszkay, A. (2005). Mechanism of Cd2+ toxicity: Cd2+ inhibits photoactivation of photosystem II by competitive binding to the essential Ca2+ site. Biochim. Biophys. Acta, 1706, No. 1-2, pp. 158-164. https://doi.org/10.1016/j.bbabio.2004.10.005

9. Sigfridsson, K.G.V., Bernat, G., Mamedov. F. & Styring, S. (2004). Molecular interference of Cd2+ with photosystem II. Biochim. Biophys. Acta, 1659, pp.19-31. https://doi.org/10.1016/j.bbabio.2004.07.003

10. Fagioni, M., D'Amici, G.M., Timperio, A.M. & Zolla, L. (2009). Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment. J. Proteome Res. 8, pp. 310-326. https://doi.org/10.1021/pr800507x

11. Pietrini, F., Iannelli, M. A., Pasqualini, S. & Massacci, A. (2003). Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis. Plant Physiol., 133, No. 2, pp. 829-837. https://doi.org/10.1104/pp.103.026518

12. Krupa, Z., Oquist, G. & Huner, N. P. (1993). The effects of cadmium on photosynthesis of Phaseolus vulgaris - a fluorescence analysis. Physiol. Plant., 88, No. 4, pp. 626-630. https://doi.org/10.1111/j.1399-3054.1993.tb01381.x

13. Asencio, C.I. & Cedeno-Maldonado, A. (1978). Effects of cadmium on carbonic anhydrase and activities dependent on electron transport of isolated chloroplasts. J. Agric. Univ. Puerto Rico, 63, pp. 195-201.

14. Polishchuk, A. V., Semenihin, A. V., Topchiy, N. M. & Zolotareva, O. K. (2018). Inhibition of multiple forms of carbonic anhydrases of spinach chloroplasts by Cu ions. Dopov. Nac. akad. nauk Ukr., No. 4, pp. 94-101. https://doi.org/10.15407/dopovidi2018.04.094

15. Hall, D. O. (1972). Nomenclature of isolated chloroplasts. Nature, 235, No. 56, pp. 125-128. https://doi.org/10.1038/newbio235125a0

16. Reeves, S. G. & Hall, D. O. (1980). Higher plants chloroplasts and grana: general preparative procedures (excluding high carbon dioxide fixation ability chloroplasts). Methods Enzymol., 69, pp. 85-94. https://doi.org/10.1016/S0076-6879(80)69010-7

17. Arnon, D.I. (1949). Copper enzymes in isolated chloroplast. Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24, No. 1, pp. 1-15. https://doi.org/10.1104/pp.24.1.1

18. Ornstein, L. & Davis, B. J. (1964). Disc electrophoresis I. Background and theory. Ann. N. Y. Acad. Sci., 121, pp. 321-349. https://doi.org/10.1111/j.1749-6632.1964.tb14207.x

19. Edwards, L. J. & Patton, R. L. (1966). Visualization of carbonic anhydrase activity in polyacrilamide gel. Stain Technol., 41, No. 6, pp. 333-334. https://doi.org/10.3109/10520296609116335

20. Wilbur, K.W. & Anderson, N.G. (1948). Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem., 176, pp. 147-154.

21. Kimber, M.S. & Pai, E.F. (2000). The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases. EMBO J., 19, No. 7, pp. 1407-1418. https://doi.org/10.1093/emboj/19.7.1407

22. Rudenko, N.N., Ignatova, L.K., Fedorchuk, T.P. & Ivanov, B.N. (2015). Carbonic anhydrases in photosynthetic cells of higher plants. Biochemistry, 80, No. 6, pp. 798-813. https://doi.org/10.1134/S0006297915060048

23. Fabre, N., Reiter, I.M., Becuwe-Linka, N., Genty, B. & Rumeau, D. (2007). Characterization and expression analysis of genes encoding a and b carbonic anhydrases in Arabidopsis. Plant Cell Environ., 30, pp. 617-629. https://doi.org/10.1111/j.1365-3040.2007.01651.x

24. Moroney, J.V., Bartlett, S.G. & Samuelsson, G. (2001). Carbonic anhydrases in plants and algae. Plant Cell Environ., 24, pp. 141-153. https://doi.org/10.1111/j.1365-3040.2001.00669.x

25. DiMario, R. J., Clayton, H., Mukherjee, A., Ludwig, M. & Moroney, J.V. (2017). Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Mol. Plant., 10, pp. 30-46. https://doi.org/10.1016/j.molp.2016.09.001

26. DiMario, R.J., Quebedeaux, J.C., Longstreth, D.J., Dassanayake, M., Hartman, M.M. & Moroney, J.V. (2016). The cytoplasmic carbonic anhydrases b-CA2 and b-KA4 are required for optimal plant growth at low CO2. Plant Physiol., 171, pp. 280-293. https://doi.org/10.1104/pp.15.01990

27. Badger, M.R. & Price, G.D. (1994). The role of carbonic anhydrase in photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol., 45, pp. 369-392. https://doi.org/10.1146/annurev.pp.45.060194.002101

28. Johansson, I.M. & Forsman, C. (1993). Kinetic studies of pea carbonic anhydrase. Eur. J. Biochem., 218, No. 2, pp. 439-446. https://doi.org/10.1111/j.1432-1033.1993.tb18394.x

29. Kaplan, A. & Reinhold, L. (1999). CO2 concentrating mechanisms in photosynthetic microorganisms. Ann. Rev. Plant Biol., 50, No. 1, pp. 539-570. https://doi.org/10.1146/annurev.arplant.50.1.539

30. Jebanathirajah, J. A. & Coleman, J.R. (1998). Association of carbonic anhydrase with a Calvin cycle enzyme complex in Nicotiana tabacum. Planta, 204, pp. 177-182. https://doi.org/10.1007/s004250050244

31. Lionetto, M. G., Caricato, R., Giordano, M. E., Erroi, E. & Schettino, T. (2012). Carbonic anhydrase and heavy metals. Biochemistry ed. by Ekinci D., pp. 205-224. ISBN: 978-953-51-0076-8.

32. Lionetto, M. G., Caricato, R., Giordano, M. E. & Schettino, T. (2016). The complex relationship between metals and carbonic anhydrase: new insights and perspectives. Int. J. Mol. Sci., 17, No. 127, pp. 1-14. https://doi.org/10.3390/ijms17010127

33. Soyut, H., Beydemir, Є. & Hisar, O. (2008). Effects of some metals on carbonic anhydrase from brains of rainbow. Trout. Biol. Trace Elem. Res., 123, No. 1, pp. 179-190. https://doi.org/10.1007/s12011-008-8108-9