Физиология растений и генетика 2017, том 49, № 1, 64-70, doi: https://doi.org/10.15407/frg2017.01.064

Влияние ингибитора НАДФН-оксидазы и антагонистов кальция на фитотоксическое действие гербицидов ингибиторов ацетил-КоА-карбоксилазы и ацетолактатсинтазы

Сычук А.М., Мордерер Е.Ю.

  • Институт физиологии растений и генетики Национальной академии наук Украины, Киев

Для выяснения весомости вклада активных форм кислорода (АФК), которые могут образовываться в результате неспецифической стрессовой реакции, в частности активации НАДФН-оксидазы, в развитие патогенеза, инду­цированного гербицидами ингибиторами ацетил-КоА-карбоксилазы (АКК) и ацетолактатсинтазы (АЛС), исследовано влияние ингибитора НАДФН-оксидазы дифениленйодхлорида (DPI), блокатора кальциевых каналов хлорида лантана (LaCl3) и антагониста кальмодулина хлорпромазина (ХП) на фитотоксическое действие гербицидов этих классов. Установлено, что влияние DPI, LaCl3 и ХП на фитотоксическое действие ингибитора АЛС значительно превышало их влияние на действие гербицида ингибитора АКК. Сделан вывод, что в патогенезе, индуцированном гербицидами ингибиторами АЛС, определенную роль играют АФК, образующиеся в результате неспецифической стрессовой реакции растений, а для гербицидов ингибиторов АКК более весомым является вклад АФК, которые происходят из другого источника.

Ключевые слова: NADPH oxidase, diphenyleneiodonium chloride, lanthanum chloride, chlorpromazine, reactive oxygen species, programmed cell death

Физиология растений и генетика
2017, том 49, № 1, 64-70

Полный текст и дополнительные материалы

В свободном доступе: PDF  

Цитированная литература

1. Gar'kova, A.N., Rusyaeva, M.M., Nushtaeva, O.V., Aroslankina, Yu.N. & Lukatkin, A.S. (2011). Treatment with the herbicide granstar induces oxidative stress in cereal leaves. Fiziologiya rasteniy, 58, No. 6, pp. 935-944 [in Russian]. https://doi.org/10.1134/S1021443711060069

2. Glyan'ko, A.K., Ishchenko, A.A., Mitanova, N.B. & Vasilyeva, G.G. (2009). NADPH oxidase of plants. Visn. Kharkiv. nats. agrar. un-tu. Ser. Biologiya, No. 2 (17), pp. 6-18 [in Russian].

3. Morderer, Ye.Yu., Palanytsya, M.P. & Rodzevych, O.P. (2008). Investigation of the participation of free radical oxidation reactions in the development of phytotoxic effects of graminicides. Fiziolohiya i biokhimiya kul't. rasteniy, 40, No. 1, pp. 56-62 [in Ukrainian].

4. Morderer, Ye.Yu. (2008). Current state, problems and prospects of the development of chemical method of weed control. Fiziolohiya i biokhimiya kul't. rasteniy, 40, No. 6, pp. 492-502 [in Ukrainian].

5. Morderer, Ye.Yu. (2009). Physiological aspects of crop protection from weeds. Plant physiology: problems and prospects of development. Kyiv: Logos, Vol. 2, pp. 12-39 [in Ukrainian].

6. Palanytsya, P.M., Sorokina, S.I. & Morderer, Ye.Yu. (2012). Reactive oxygen species and their transformation in the formation of rhizobia-legume symbiosis under the of herbicides action. Fiziolohiya i biokhimiya kul't. rasteniy, 44, No. 4, pp. 302-311 [in Ukrainian].

7. Palanytsya, M.P., Trach, V.V. & Morderer, Ye.Yu. (2009). The generation of reactive oxygen species under the action of granicides and modificators of their phytotoxicity. Fiziolohiya i biokhimiya kul't. rasteniy, 41, No. 4, pp. 328-334 [in Ukrainian].

8. Palanytsya, M.P., ​​Trach, V.V., Rodzevych, O.P. & Morderer, Ye.Yu. (2008). Possible participation of reactive oxygen species in the development of phytotoxic effects of graminicides. Fiziolohiya i biokhimiya kul't. rasteniy, 40, No. 4, pp. 355-361 [in Ukrainian].

9. Radchenko, M.P., Sychuk, A.M. & Morderer, Ye.Yu. (2016). The activity of NADPH-oxidase in the corn seedlings root merystem under the herbicide inhibitor of acetyl-CoA carboxylase action. Fiziol. rast. genet., 48, No. 6, pp. 544-547 [in Ukrainian].

10. Radchenko, M.P., Sychuk, A.M. & Morderer, Ye.Yu. (2013). The reducing of antagonism in the mixtures of herbicides through specific inhibitor of superoxide dismutase. Uch. zapysky Tavrich. nats. un-tu im. V.I. Vernads'koho. Ser. Biolohiya, khimiya, 26 (65), No. 3, pp. 161-168 [in Ukrainian].

11. Sychuk, A.M., Nizkov, Ye.I., Rodzevych, O.P. & Morderer, Ye.Yu. (2016). Interaction effects in the mixtures of acetolactate synthase inhibiting herbicides with herbicide metribuzin. Karantyn i zakhyst roslyn, No. 2-3, pp. 27-29 [in Ukrainian].

12. Sychuk, A.M., Radchenko, M.P. & Morderer, Ye.Yu. (2013). Programmed cell death in the pathogenesis induced by herbicides inhibitors of acetyl-CoA carboxylase. Biol. studiyi, 2, pp. 101-106 [in Ukrainian]. https://doi.org/10.30970/sbi.0702.294

13. Sychuk A.M. (2015). The participation of programmed cell death in the herbicides induced pathogenesis. (Extended abstract of candidate thesis). Institute of Plant Physiology and Genetics, Kyiv, Ukraine [in Ukrainian].

14. Bates, S. & Vousden, K.H. (1999). Mechanisms of p53-mediated apoptosis. Cell. Mol. Life Sci., 55, pp. 28-37. https://doi.org/10.1007/s000180050267

15. Bindschedler, L.V., Dewdney, I., Blee, K.A., Stone, J.M., Asai, T., Plotnikov, J., Denoux, C., Hayes, T., Gerrish, C., Davies, D.R., Ausubel, F.M. & Bolwell, G.P. (2006). Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J., 47, pp. 851-863. https://doi.org/10.1111/j.1365-313X.2006.02837.x

16. Burbridge, E., Diamond, M., Dix, P.J. & McCabe, P.F. (2007). Use of a cell morphology to evaluate the effect of a peroxidase gene on the cell death induction thresholds in tobacco. Plant Sci., 172, pp. 853-860. https://doi.org/10.1016/j.plantsci.2006.03.024

17. Chen, S. & Dickman, M. (2004). Bc1-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J. Exp. Bot., 55, pp. 2617-2623. https://doi.org/10.1093/jxb/erh275

18. Chichkova, N.V., Shaw, J., Galiullina, R.A., Drury, G.E., Tuzhikov, A.I., Kim, S.H., Kalkum, M., Hong, T.B., Gorshkova, E.N., Torrance, L., Vartapetian, A.B. & Taliansky, M. (2010). Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. EMBO J., 29, pp. 1149-1161. https://doi.org/10.1038/emboj.2010.1

19. Dan Hess, F. (2000). Light-dependent herbicides: an overview. Weed Sci., 48, pp. 160-170. https://doi.org/10.1614/0043-1745(2000)048[0160:LDHAO]2.0.CO;2

20. Danon, A., Delorme, V., Mailhac, N. & Gallois, P. (2000). Plant programmed cell death: a common way to die. Plant Physiol. Biochem., 38, pp. 647-655. https://doi.org/10.1016/S0981-9428(00)01178-5

21. Dat, J.F., Pellinen, R., Beeckman, T., Van De Cotte, B., Langebartels, C., Kangasjärvi, J., Inze D. & Van Breusegem, F. (2003).Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J., 33, pp. 621-632. https://doi.org/10.1046/j.1365-313X.2003.01655.x

22. de Freitas, D.S., Coelho, M.C., Souza, M.T.Jr., Marques, A. & Ribeiro, E.B. (2007). Introduction of the anti-apoptotic baculovirus p35 gene in passion fruit induces herbicide tolerance, reduced bacterial lesions, but does not inhibits passion fruit woodiness disease progress induced by cowpea aphid-borne mosaic virus (CABMV). Biotechnol. Lett., 29, pp. 79-87. https://doi.org/10.1007/s10529-006-9201-9

23. Delye, C. (2005). Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci., 53, pp. 728-746. https://doi.org/10.1614/WS-04-203R.1

24. De Pinto, M., Locato, V. & de Gara, L. (2012). Redox regulation in plant programmed cell death. Plant Cell Environ., 35, pp. 234-244. https://doi.org/10.1111/j.1365-3040.2011.02387.x

25. Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., Davies, J.M. & Dolan, L. (2003). Reactive oxygen species produced by NADPH-oxidase regulate plant cell growth. Nature, 6, pp. 422-442. https://doi.org/10.1038/nature01485

26. Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I. & Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioassays, 28, pp. 1091-1101. https://doi.org/10.1002/bies.20493

27. Graham, M.Y. (2005). The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in soybean. Plant Physiol., 139, pp. 1784-1794. https://doi.org/10.1104/pp.105.068676

28. Hengartner, M.O. (2000). The biochemistry of apoptosis. Nature, 407, pp. 770-776. https://doi.org/10.1038/35037710

29. O'Brien, E.W., Baguley, B.C., Murray, B.G. & Morris, B.A. (1998). Early stages of the apoptotic pathway in plant cells are reversible. Plant J., 13, pp. 803-814. https://doi.org/10.1046/j.1365-313X.1998.00087.x

30. Radchenko, M.P., Sychuk, A.M. & Morderer, Ye.Yu. (2014). Decrease of the herbicide fenoxaprop phytotoxicity in the drought condition: the role of antioxidant enzymatic system. J. Plant. Protection Res., 54, No. 4, pp. 390-394. https://doi.org/10.2478/jppr-2014-0058

31. Sagi, M. & Fluhr, R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol., 141, pp. 336-340. https://doi.org/10.1104/pp.106.078089

32. Stidham, M.A. (1991). Herbicides that inhibit acetohydroxyacid synthase. Weed Sci., 39, pp. 428-434.