Физиология растений и генетика 2017, том 49, № 1, 25-35, doi: https://doi.org/10.15407/frg2017.01.025

Особенности пигментного состава и ультраструктурного строения хлоропластов растений разных таксонов

Бабенко Л.М., Косаковская И.В.

  • Институт ботаники им. Н.Г. Холодного Национальной академии наук Украины, Киев

Исследованы особенности пигментного состава и ультраструктурного строения хлоропластов растений различных таксонов:: Equisetum arvense L., Salvinia natans (L.) All., Triticum aestivum L. Установлено, что для вегетативных побегов хвоща полевого Е. arvense характерно высокое содержание фотосинтетических пигментов, ассоциированных с хлоропластами линзовидной формы, тогда как в генеративных побегах фотосинтетических пигментов меньше и ассоциированы они исключительно с запасающими органеллами липопластами. Выявлены четкие различия ультраструктурного строения хлоропластов и содержания фо­тосинтетических пигментов у плавающих и погруженных в воду вай папоротника-гидрофита S. natans, которые определяют их физиологические функции как ассимилирующих и всасывающих органов. Хлоропласты клеток мезофилла листьев Т. aestivum отличаются хорошо развитыми и многочисленными гранами, которые плотно наполняют объем органелл. Для них характерно высокое содержание пигментов, ассоциированных с белковыми комплексами, входящими в состав фотосинтетических мембран. Особенности пигментного состава и ультраструктурной организации хлоропластов растений разных таксонов обсуждены в связи с их адаптационными характеристиками и эволюционным положением.

Ключевые слова: Equisetum arvense L., Salvinia natans (L.) All., Triticum aestivum L., pigments, chloroplast, ultrastructure

Физиология растений и генетика
2017, том 49, № 1, 25-35

Полный текст и дополнительные материалы

В свободном доступе: PDF  

Цитированная литература

1. Andrianova, Y.E. & Tarchevsky, I.A. (2000). Chlorophyll and plant productivity. Moscow: Nauka [in Russian].

2. Babenko, L.M., Sheyko, O.A., Kosakivska, I.V., Vedenichova, N.P., Nehretskiy, V.A. & Vasheka, O.V. (2015). Structural and functional characteristics of pteridophytes (Polypodiophyta). Bull. Charkovsky Natl. Agr. Univ., No. 1(34), pp. 80-103 [in Ukrainian].

3. Voytenko, L.V., Shcherbatyuk, M.M., Stakhiv, M.P. & Musatenko, L.I. (2012). Ultrastructural features of internode cells of field horsetail (Equisetum arvense L.). Dopov. Nac. akad. nauk Ukr., No. 2, pp. 170-173 [in Ukrainian].

4. Ivanov, L.A., Ivanova, L.A., Ronzhina, D.A. & Yudina P.K. (2013). Changes in the chlorophyll and carotenoid contents in the leaves of steppe plants along a latitudinal gradient in South Ural. Russ. J. Plant Physiol., No. 60 (6), pp. 812-820. https://doi.org/10.1134/S1021443713050075

5. Kiriziy, D.A., Stasik, O.O., Pryadkina, G.A. & Shadchina, T.M. (2014). Photosynthesis. Vol. 2. Assimilation of CO2 and the mechanisms of its regulation. Kiev: Logos [in Russian].

6. Kiriziy, D.A. (2004). Photosynthesis and plant growth in the aspect of donor-acceptor relations. Kiev: Logos [in Russian].

7. Klimenko, E.N. (2014). Structural and functional aspects of heterophylly in Nuphar lutea (L.) Smith. (Extended abstract of candidate (PhD) thesis). Institute of Food Biotechnology and Genomics, Kyiv, Ukraine [in Ukrainian].

8. Kochubey, S.M., Bondarenko, O.Yu. & Shevchenko, V.V. (2014). Photosynthesis. Vol. 1. The structure and functional peculiarities of light phase of photosynthesis. Kiev: Logos [in Russian].

9. Maslova, T.G., Mamushina, N.S., Sherstneva, O.A. & Bubolo, L.S. (2009). Seasonal structural and functional changes in the photosynthetic apparatus of evergreen. Russ. J. Plant Physiol., No. 56 (5), pp. 607-615. https://doi.org/10.1134/S1021443709050045

10. Mokronosov, A.T., Gavrilenko, V.F. & Zhigalova T.V. (2006). Photosynthesis: physiological, environmental and biochemical aspects. Moscow: Akademiya [in Russian].

11. Nedukha, O.M. (2014). Heterophylly in Plants. Kyiv: Alterpress [in Ukrainian].

12. Smolikova, G.N. & Medvedev, S.S. (2015). Seed carotenoids: synthesis, diversity, and functions. Russ. J. Plant Physiol., No. 62 (1), pp. 1-13. https://doi.org/10.1134/S1021443715010136

13. Sofronova, V.E., Chepalov, V.A., Dymova, O.V. & Golovko, T.K. (2014). The role of pigment system of an evergreen dwarf shrub Ephedra monosperma in adaptation to the climate of Central Yakutia. Russ. J. Plant Physiol., No. 61 (2), pp. 246-254. https://doi.org/10.1134/S1021443714010142

14. Stakhiv, M.P., Shcherbatuik, M.M., Voytenko, L.V. & Musatenko, L.I. (2013). Ultrastructural features of the internodes' surface in horsetail (Equisetum arvense L.). Modern Phytomorphology, No. 4, pp. 355-358 [in Ukrainian].

15. Sytnikov, D.M., Babenko, L.M. & Shcherbatuik, M.M. (2013). Photosynthetic pigments and ontogenesis of Equisetum arvense L. Bull. Odessa national univ. Ser. Biology, No. 18 (2), pp. 50-63 [in Russian].

16. Shcherbatiuk, M.M., Babenko, L.M., Sheyko, O.A. & Kosakivska I.V. (2015). Microstructural features of water fern Salvinia natans (L.) All. organ surfaces. Modern Phytomorphology, No. 7, pp. 129-133 [in Ukrainian].

17. Shcherbatiuk, M.M., Bricov, V.O. & Martin, G.G. (2015). Preparation of samples of plant tissues for electronic microscopy (theoretical and practical aspects). Kyiv: Talkom [in Ukrainian].

18. Austin, J.R., Frost, E., Vidi, P.A., Kessler, F. & Staehelin L.A. (2006). Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell., No. 18, pp. 1693-1703. https://doi.org/10.1105/tpc.105.039859

19. Babenko, L.M., Kosakivska, I.V., Akimov, Yu.A., Klymchuk, D.O. & Skaternya, T.D. (2014). Effect of temperature stresses on pigment content, lipoxygenase activity and cell ultrastructure of winter wheat seedlings. Genet. Plant Physiol., No. 4 (1-2), pp. 117-125.

20. Barthlott, W., Wiersch, S., Colic, Z. & Koch, K. (2009). Classification of trichome types within species of the water fern Salvinia, and ontogeny of the egg-beater trichomes. Botany, No. 87, pp. 830-836. https://doi.org/10.1139/B09-048

21. Björkman, O. (1998). Responses to different quantum flux densities. In: Physiological Plant Ecology. I. Responses to the Physical Environment. Lange, O. L., Nobel, P. S., Osmond, C. B. & Ziegler, H. (Eds.), pp.57–107, Berlin: Springer-Verlag.

22. Carde, J.-P. (1987). Electron microscopy of plant cell membranes. Methods in enzymology, No. 148, pp. 599-625. https://doi.org/10.1016/0076-6879(87)48058-0

23. Croxdale, J.G. (1981). Salvinia leaves. III. Morphogenesis of the submerged leaf. Can. J. Bot., No. 59, pp. 2065-2072. https://doi.org/10.1139/b81-268

24. Cuttriss, A.J. & Pogson, B.J. (2004). Carotenoids. In Davies, K. M. (Ed.), Plant pigments and their manipulation, pp. 57-91. Boca Raton: CRC Press.

25. Demmig-Adams, B., Gilmore, A.M. & Adams, W.W. (1996). Carotenoids 3: in vivo function of carotenoids in higher plants. FASEB J., No. 10, pp.403-412. https://doi.org/10.1096/fasebj.10.4.8647339

26. Evert, R.F. (2007). Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 3rd Edition. New Jersey: John Wiley & Sons, Inc.

27. Marshall, G. (1986). Growth and development of field horsetail (Equisetum arvense L.). Weed Sci. No. 34, pp.271-275.

28. Mozzo, M., Dall'Osto, L., Hienerwadel, R., Bassi, R. & Croce, R. (2008). Photoprotection in the antenna complexes of photosystem II. Role of individual xanthophylls in chlorophyll triplet quenching. J. Biol. Chem., No. 283 (10), pp. 6184-6192. https://doi.org/10.1074/jbc.M708961200

29. Nagalingum, N.S., Schneider, H. & Pryer, K.M. (2006). Comparative morphology of reproductive structures in heterosporous water ferns and a reevaluation of the sporocarp. Int. J. Plant Sci., No. 167 (4), pp. 805-815. https://doi.org/10.1086/503848

30. Oquist, G. & Huner, N.P. (2003). Photosynthesis of overwintering evergreen plants. Annu. Rev. Plant Biol., No. 54, pp. 329-355. https://doi.org/10.1146/annurev.arplant.54.072402.115741

31. Page C. (2002). Ecological strategies in fern evolution: a neopteridological overview. Rev. Palaeobot. Palynol., No. 119, pp. 1-33. https://doi.org/10.1016/S0034-6667(01)00127-0

32. Parry, D.W., Hodson, M.J. & Sangster, A.G. (1984). Some recent advances in studies of silicon in higher plants. Philos. Trans. Royal Soc. London, Ser. B, No. 304, pp. 537-549. https://doi.org/10.1098/rstb.1984.0045

33. Pogson, B.J., Rissler, H.M. & Frank, H.A. (2005). The role of carotenoids in energy quenching. In The Light-Driven Water: Plastoquinone Oxidoreductase, Wyrdzynski, T. & Satoh, K. (Eds.), pp. 515-537. Dodrecht: Springer. https://doi.org/10.1007/1-4020-4254-X_24

34. Ramel, F., Birtic, S., Cuiné, S., Triantaphylidès, C., Ravanat, J.L. & Havaux, M. (2012). Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol., No. 158, pp. 1267-1278. https://doi.org/10.1104/pp.111.182394

35. Soll J. (2016). The plastid reticulum reloaded. Endocytobiosis & Cell Res., No. 27, pp. 6-10.

36. Spicher, L. & Kessler, F. (2015). Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K1 and E metabolism. Curr. Opin. Plant Biol., No. 25, pp. 123-129. https://doi.org/10.1016/j.pbi.2015.05.005

37. Stern, K.R., Jansky, S. & Bidlack J.E. (2003). Introductory Plant Biology. 9th Edition. McGraw-Hill Companies, Inc., USA.

38. Stumskaya, M. & Wurtzela, E.T. (2013). The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Sci., No. 208, pp. 58-63. https://doi.org/10.1016/j.plantsci.2013.03.012

39. Wellburn, A. (1994). The spectral determination of chlorophyll a and chlorophyll b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., No. 144, pp. 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2